Series Approximate Analytical Solution of Fractional Partial Differential Equations

EMU I-REP

Show simple item record

dc.contributor.advisor Mahmudov, Nazim
dc.contributor.author Ojo, Gbenga Olayinka
dc.date.accessioned 2025-11-12T11:18:11Z
dc.date.available 2025-11-12T11:18:11Z
dc.date.issued 2021-08
dc.date.submitted 2021-08
dc.identifier.citation Ojo, Gbenga Olayinka. (2021). Series Approximate Analytical Solution of Fractional Partial Differential Equations. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. en_US
dc.identifier.uri http://hdl.handle.net/11129/6495
dc.description Doctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2021. Supervisor: Prof. Dr. Nazim Mahmudov en_US
dc.description.abstract The primary objective of this thesis work is the presentation of a new iterative procedure to achieve both series approximate solution and analytical solution of positive non-integer order partial differential equations. The order of the derivative is considered according to Caputo’s assumption. This iterative procedure is called Aboodh transform iterative method. The Aboodh transform iterative method is a combination of the new iterative method with the Aboodh transform. The new iterative method was introduce as important tool to linearize all the associated nonlinear terms since the Aboodh transform cannot handle the nonlinear terms. Several examples and cases are examined. The solutions obtained were compared with solutions obtained by other existing methods in literature. Also, the solutions reveals that the Aboodh transform iterative procedure is less computational involving and requires no restrictive assumption, Lagrange multipliers and Adomian polynomial. The software used to implement the Aboodh transform iterative procedure are LaTex, MATHEMATICA 10.0 and MATLAB R2021. en_US
dc.description.abstract ÖZ: Bu tez çalı¸smasının temel amacı, pozitif ve tamsayı olmayan mertebeden kısmi difernsiyel denklemlerin hem seri yakla¸sık çözümünü hem de analitik çözümünü elde etmek için yeni bir iteratif prosedürün sunulmasıdır. Türevin mertebesini belirlemede Caputo’nun varsayımı dikkate alınmı¸stır. Bu yinelemeli prosedüre “Aboodh dönü¸sümü yinelemeli yöntemi” denmektedir. Aboodh dönü¸sümü yinelemeli yöntemi, Aboodh dönü¸sümü ile yeni yinelemeli yöntemin bir birle¸simidir. Aboodh dönü¸sümünün dogrusal olmayan terimler için ˘ çalı¸smadıgından dolayı, yeni iteratif metod do ˘ grusal olmayan terimlerin ˘ dogrusalla¸stırması özelli ˘ giyle önemli bir araç olarak sunulmaktadır. ˘ Bu tezde, bazı örnekler ve çe¸sitli vakalar degerlendirilmi¸stir. Elde edilen sonuçlar, ˘ literatürde kullanılan diger metodlar ile kar¸sıla¸stırılmı¸stır. Ayrıca, elde edilen çözümler ˘ Adoodh dönü¸sümü yinelemeli metodun daha az hesap gerektirdigini ve daha kısıtlı ˘ varsayımlar kullanıldıgını ortaya koymu¸stur. ˘ Son olara, Aboodh dönü¸sümü yinelemeli prosedürünü uygulamak için LaTex, MATHEMATICA 10.0 ve MATLAB R2021 yazılımları kullanılmı¸stır. en_US
dc.language.iso eng en_US
dc.publisher Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Thesis Tez en_US
dc.title Series Approximate Analytical Solution of Fractional Partial Differential Equations en_US
dc.type doctoralThesis en_US
dc.contributor.department Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record