Using the Distance in Logistic Regression Models for Predictor Ranking in Diabetes Detection

dc.contributor.authorSheikhi, Ghazaal
dc.contributor.authorAltincay, Hakan
dc.date.accessioned2026-02-06T18:28:58Z
dc.date.issued2020
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Conference on Medical and Biological Engineering in Bosnia and Herzegovina (CMBEBIH) -- MAY 16-18, 2019 -- Banja Luka, BOSNIA & HERCEG
dc.description.abstractLogistic regression is widely used to model the relationship between a response variable and multiple independent variables. In practice, the most important variables for each problem domain are generally well known. However, a wealth of ongoing studies has been exploring additional variables for improving the prediction performance using an enriched model. In this article, a new method for ranking binary independent variables is suggested based on the distance between two decision boundaries. The boundaries correspond to the cases when value of the variable is zero or one. It is shown that, using age and body mass index as the base variables for diabetes prediction, the distances mentioned above are effective for ranking additional variables, leading to better scores than several conventionally used approaches.
dc.identifier.doi10.1007/978-3-030-17971-7_100
dc.identifier.endpage670
dc.identifier.isbn978-3-030-17971-7
dc.identifier.isbn978-3-030-17970-0
dc.identifier.issn1680-0737
dc.identifier.scopus2-s2.0-85066042818
dc.identifier.scopusqualityQ4
dc.identifier.startpage665
dc.identifier.urihttps://doi.org/10.1007/978-3-030-17971-7_100
dc.identifier.urihttps://hdl.handle.net/11129/11203
dc.identifier.volume73
dc.identifier.wosWOS:000491311000100
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofProceedings of the International Conference on Medical and Biological Engineering, Cmbebih 2019
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectLogistic regression
dc.subjectFeature selection
dc.subjectBinary predictors
dc.subjectDecision boundary
dc.subjectDiabetes prediction
dc.titleUsing the Distance in Logistic Regression Models for Predictor Ranking in Diabetes Detection
dc.typeConference Object

Files