Probability collectives hybridised with differential evolution for global optimisation

dc.contributor.authorXu, Zixiang
dc.contributor.authorUnveren, Ahmet
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T18:26:22Z
dc.date.issued2016
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractProbability collectives (PC) is a recent agent-based search framework for function optimisation through optimising parameters of a collection of probability distributions. Differential evolution (DE) is a successful metaheuristic method particularly for real-parameter global optimisation. This paper presents a hybrid computational model based on a modified PC and DE algorithms for the purpose of improved solutions for real-valued optimisation problems. In the proposed model, PC performs a first phase local search and explores promising search areas through updating parameters of probability distributions over the solution space while DE uses the extracted PC-based knowledge to guide its search with adaptive heuristics. A novel distance-based adaptive mutation scheme is designed within DE to guide the search towards better regions of the solution space. Experimental results reveal that the proposed hybrid algorithm is able to integrate the PC's collective learning methodology and DE's adaptive search strategy effectively to generate improved solutions for difficult problems.
dc.identifier.doi10.1504/IJBIC.2016.076652
dc.identifier.endpage153
dc.identifier.issn1758-0366
dc.identifier.issn1758-0374
dc.identifier.issue3
dc.identifier.orcid0000-0002-8487-1107
dc.identifier.scopus2-s2.0-84971483989
dc.identifier.scopusqualityQ2
dc.identifier.startpage133
dc.identifier.urihttps://doi.org/10.1504/IJBIC.2016.076652
dc.identifier.urihttps://hdl.handle.net/11129/10464
dc.identifier.volume8
dc.identifier.wosWOS:000376165100001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInderscience Enterprises Ltd
dc.relation.ispartofInternational Journal of Bio-Inspired Computation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectprobability collectives
dc.subjectdifferential evolution
dc.subjectglobal optimisation
dc.subjectmetaheuristics
dc.subjectmulti-agent systems
dc.subjectMAS
dc.titleProbability collectives hybridised with differential evolution for global optimisation
dc.typeArticle

Files