Topologically quantized Schwarzschild black hole

dc.contributor.authorHalilsoy, M.
dc.contributor.authorMazharimousavi, S. Habib
dc.date.accessioned2026-02-06T18:48:46Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe present a new version of the Schwarzschild solution that involves an intrinsically discrete structure apt for quantization. Our method is the harmonic mapping of the unit sphere (S (2)) into itself. This explains the areal quantization whereas the energy quantum derives from the energy of the harmonic map. Likewise, all thermodynamical quantities are naturally quantized at lower orders. 'There is Plenty of Room at the Bottom' R. P. Feynman [R. P. Feynman, Lecture given on December 29, 1959 at the annual meeting of the APS with the title There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics.
dc.identifier.doi10.1088/1402-4896/ace28c
dc.identifier.issn0031-8949
dc.identifier.issn1402-4896
dc.identifier.issue8
dc.identifier.orcid0000-0002-7035-6155
dc.identifier.scopus2-s2.0-85165705593
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1088/1402-4896/ace28c
dc.identifier.urihttps://hdl.handle.net/11129/14572
dc.identifier.volume98
dc.identifier.wosWOS:001030724000001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIop Publishing Ltd
dc.relation.ispartofPhysica Scripta
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectharmonic map
dc.subjectquantized Schwarzschild
dc.subjecttopological black hole
dc.titleTopologically quantized Schwarzschild black hole
dc.typeArticle

Files