q-Laguerre type linear positive operators

dc.contributor.authorOzarslan, Mehmet Ali
dc.date.accessioned2026-02-06T18:26:32Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe main object of this paper is to define the q-Laguerre type positive linear operators and investigate the approximation properties of these operators. The rate of convegence of these operators are studied by using the modulus of continuity, Peetre's K-functional and Lipschitz class functional. The estimation to the difference vertical bar M-n+1,M-q(f; x) - M-n,M-q(f; x) vertical bar is also obtained for the Meyer-Konig and Zeller operators based on the q-integers [2]. Finally, the r-th order generalization of the q-Laguerre type operators are defined and their approximation properties and the rate of convergence of this r-th order generalization are also examined.
dc.identifier.doi10.1556/SScMath.44.2007.1.7
dc.identifier.endpage80
dc.identifier.issn0081-6906
dc.identifier.issue1
dc.identifier.scopus2-s2.0-34347227834
dc.identifier.scopusqualityQ3
dc.identifier.startpage65
dc.identifier.urihttps://doi.org/10.1556/SScMath.44.2007.1.7
dc.identifier.urihttps://hdl.handle.net/11129/10538
dc.identifier.volume44
dc.identifier.wosWOS:000244565500007
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAkademiai Kiado
dc.relation.ispartofStudia Scientiarum Mathematicarum Hungarica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectpositive linear operators
dc.subjectthe Korovkin theorem
dc.subjectthe Meyer-Konig and Zeller operators based on q-integers
dc.subjectq-Laguerre polynomials
dc.subjectLipschitz class
dc.subjectK-functional of Peetre
dc.subjectmodulus of continuity
dc.subjectgenerating function
dc.titleq-Laguerre type linear positive operators
dc.typeArticle

Files