Reduction of generalization error in fuzzy system modeling

dc.contributor.authorBodur, Mehmet
dc.contributor.authorAcan, Adnan
dc.contributor.authorÜnveren, Ahmet
dc.date.accessioned2026-02-06T17:54:35Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.description2006 IEEE International Conference on Fuzzy Systems --
dc.description.abstractThis paper proposes a technique to reduce the overfitting of the fuzzy models to the training data set during the supervised training phase. Typically a training data set is employed in extraction of the unsupervised fuzzy rule base (FRB) of a fuzzy model (FM), and in supervised training of the FRB to reduce the output error of FM for the training data set. However, recently developed optimization tools usually results in the overfitting of the FM to the training data set, which causes unacceptable rise in the output error for the verification data set. The proposed approach is based on dynamic construction of synthetic training data sets with similar statistical features to the verification data set. The proposed technique is tested on simple single-input and several multi-input benchmark data sets for the commonly used TS fuzzy inference method. The test results indicated that the proposed method is successful in reducing the verification error. © 2006 IEEE.
dc.identifier.doi10.1109/FUZZY.2006.1682003
dc.identifier.endpage2189
dc.identifier.isbn9781424435975
dc.identifier.isbn9781509060207
dc.identifier.isbn9781538617281
dc.identifier.isbn9781467374286
dc.identifier.isbn0780383532
dc.identifier.isbn9781479900220
dc.identifier.isbn0780394887
dc.identifier.isbn9781665467100
dc.identifier.isbn9781509060344
dc.identifier.isbn9798350319545
dc.identifier.issn1098-7584
dc.identifier.scopus2-s2.0-34250789083
dc.identifier.scopusqualityQ3
dc.identifier.startpage2184
dc.identifier.urihttps://doi.org/10.1109/FUZZY.2006.1682003
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7477
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofIEEE International Conference on Fuzzy Systems
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectData set
dc.subjectOptimization tools
dc.subjectVerification error
dc.subjectData structures
dc.subjectError analysis
dc.subjectFuzzy inference
dc.subjectMathematical models
dc.subjectOptimization
dc.subjectStatistical methods
dc.subjectFuzzy systems
dc.titleReduction of generalization error in fuzzy system modeling
dc.typeConference Object

Files