Variable Patch Size Sparse Representation over Learned Dictionaries

dc.contributor.authorNazzal, Mahmoud
dc.contributor.authorOzkaramanli, Huseyin
dc.date.accessioned2026-02-06T18:16:56Z
dc.date.issued2014
dc.departmentDoğu Akdeniz Üniversitesi
dc.description22nd IEEE Signal Processing and Communications Applications Conference (SIU) -- APR 23-25, 2014 -- Karadeniz Teknik Univ, Trabzon, TURKEY
dc.description.abstractThis paper addresses the patch size issue in sparse representation over learned dictionaries. A strategy for selecting the best patch size is proposed. It is empirically shown that the representation quality of natural image patches depends on the patch size considered. The proposed strategy selectively chooses the most appropriate patch size based on the resulting sparse representation error. The sparse representation of each small-sized image region is taken by selecting the most suitable patch size for the patch containing this region. The proposed strategy is shown able to improve the sparse representation quality as seen in numerical experiments, both quantitatively and qualitatively. As tested over a set of benchmark images, the proposed strategy has an average PSNR improvement of 0.99 dB over the standard case of using a fixed patch size. Visual comparison results come inline with the PSNR improvement.
dc.description.sponsorshipIEEE,Karadeniz Tech Univ, Dept Comp Engn & Elect & Elect Engn
dc.identifier.endpage1370
dc.identifier.isbn978-1-4799-4874-1
dc.identifier.issn2165-0608
dc.identifier.orcid0000-0003-3375-0310
dc.identifier.scopus2-s2.0-84903787796
dc.identifier.scopusqualityN/A
dc.identifier.startpage1367
dc.identifier.urihttps://hdl.handle.net/11129/8736
dc.identifier.wosWOS:000356351400321
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2014 22Nd Signal Processing and Communications Applications Conference (Siu)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectSparse Representation
dc.subjectDictionary Learning
dc.subjectVariable Patch Size
dc.titleVariable Patch Size Sparse Representation over Learned Dictionaries
dc.typeConference Object

Files