Chronic administration of nano-sized PAMAM dendrimers in vivo inhibits EGFR-ERK1/2-ROCK signaling pathway and attenuates diabetes-induced vascular remodeling and dysfunction

dc.contributor.authorAkhtar, Saghir
dc.contributor.authorChandrasekhar, Bindu
dc.contributor.authorYousif, Mariam H. M.
dc.contributor.authorRenno, Waleed
dc.contributor.authorBenter, Ibrahim F.
dc.contributor.authorEl-Hashim, Ahmed Z.
dc.date.accessioned2026-02-06T18:40:12Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe investigated whether chronic administration of nano-sized polyamidoamine (PAMAM) dendrimers can have beneficial effects on diabetes-induced vascular dysfunction by inhibiting the epidermal growth factor receptor (EGFR)-ERK1/2-Rho kinase (ROCK)-a pathway known to be critical in the development of diabetic vascular complications. Daily administration of naked PAMAMs for up to 4 weeks to streptozotocin-induced diabetic male Wistar rats inhibited EGFR-ERK1/2-ROCK signaling and improved diabetes-induced vascular remodeling and dysfunction in a dose, generation (G6 > G5) and surface chemistry-dependent manner (cationic > anionic > neutral). PAMAMs, AG1478 (a selective EGFR inhibitor), or anti-EGFR siRNA also inhibited vascular EGFR-ERK1/2-ROCK signaling in vitro. These data showed that naked PAMAM dendrimers have the propensity to modulate key (e.g. EGFR) cell signaling cascades with associated pharmacological consequences in vivo that are dependent on their physicochemical properties. Thus, PAMAMs, alone or in combination with vasculoprotective agents, may have a beneficial role in the potential treatment of diabetes-induced vascular complications. (C) 2019 Elsevier Inc. All rights reserved.
dc.description.sponsorshipKuwait University [MR01/13]; OMICS Research Unit/RCF; [SRUL02/13]
dc.description.sponsorshipThis research is funded by a grant from the Research Sector at Kuwait University (MR01/13). We also acknowledge support from the OMICS Research Unit/RCF and the General Facility Grant (SRUL02/13).
dc.identifier.doi10.1016/j.nano.2019.02.012
dc.identifier.endpage89
dc.identifier.issn1549-9634
dc.identifier.issn1549-9642
dc.identifier.orcid0009-0004-6794-0395
dc.identifier.orcid0000-0001-9024-9712
dc.identifier.orcid0000-0001-5045-368X
dc.identifier.pmid30844576
dc.identifier.scopus2-s2.0-85063546971
dc.identifier.scopusqualityQ1
dc.identifier.startpage78
dc.identifier.urihttps://doi.org/10.1016/j.nano.2019.02.012
dc.identifier.urihttps://hdl.handle.net/11129/13192
dc.identifier.volume18
dc.identifier.wosWOS:000471900300008
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.ispartofNanomedicine-Nanotechnology Biology and Medicine
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectPolyamidoamine
dc.subjectEGFR
dc.subjectCell signaling
dc.subjectDiabetes
dc.subjectVascular complications
dc.titleChronic administration of nano-sized PAMAM dendrimers in vivo inhibits EGFR-ERK1/2-ROCK signaling pathway and attenuates diabetes-induced vascular remodeling and dysfunction
dc.typeArticle

Files