Alzheimer's Disease Detection by Utilizing Key Slice Selection in 3D MRI Images

dc.contributor.authorMoradi, Masoud
dc.contributor.authorDemirel, Hasan
dc.contributor.authorBolourchi, Pouya
dc.date.accessioned2026-02-06T18:16:55Z
dc.date.issued2018
dc.departmentDoğu Akdeniz Üniversitesi
dc.description20th UKSim-AMSS International Conference on Computer Modelling and Simulation (UKSim) -- MAR 27-29, 2018 -- Emmanuel Coll, Cambridge, ENGLAND
dc.description.abstractThis study proposes a new approach for improving the accuracy of high-dimensional pattern recognition problem of Alzheimer's Disease (AD). The proposed method uses information from three-dimensional Magnetic Resonance Imaging (MRI) brain data with 2D slices in three orthogonal directions. It includes the calculation of Fisher Criterion between the AD and Healthy Control (HC) groups in order to select key-slices in the coronal, sagittal and axial directions. The preprocessing phase involves region detection to segment Region of Interest (ROI) based on Displacement Field (DF) method. Then we utilized energy, contrast and homogeneity metrics along with feature vectors generated by PCA and Probability Distribution Function (PDF) methods in feature extraction phase for each key-slice selected in the earlier phase. Features coming from each key slice are combined through feature fusion for improved accuracy. Experimental results show fusion method that used with brain mask give us the higher or comparable results compared with other feature extraction techniques in the literature.
dc.description.sponsorshipIEEE Comp Soc UK & RI,UK Simulat Soc,European Federat Simulat Soc,European Council Modelling & Simulat,Asia Modelling & Simulat Sec,Kingston Univ,Imperial Coll,Machine Intelligence Res Labs,Norwegian Univ Sci & Technol,Nottingham Trent Univ,Univ Technol Malaysia,Univ Sci Malaysia,Univ Malaysia Sabah,Univ Technol Mara,Univ Malaysia Perlis,Univ Malaysia Pahang,IEEE UK & RI,W Chester Univ Pennsylvania,Univ Tikrit,Univ Zilina,Fort Hays State Univ,Iran Telecom Res Ctr,Univ Teknikal Malaysia Melaka,Cardiff Metropolitan Univ,Hanbat Natl Univ,Tech Univ Appl Sci Wildau,Ken Saro Wiwa Polytechn,Rajasthan Tech Univ,NE Univ
dc.identifier.doi10.1109/UKSim.2018.00029
dc.identifier.endpage101
dc.identifier.isbn978-1-5386-5878-9
dc.identifier.issn2381-4772
dc.identifier.orcid0000-0003-3492-0617
dc.identifier.scopus2-s2.0-85061063265
dc.identifier.scopusqualityN/A
dc.identifier.startpage96
dc.identifier.urihttps://doi.org/10.1109/UKSim.2018.00029
dc.identifier.urihttps://hdl.handle.net/11129/8720
dc.identifier.wosWOS:000468444200018
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2018 Uksim-Amss 20Th International Conference on Computer Modelling and Simulation (Uksim)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectcomponent
dc.subjectAlzheimer's disease
dc.subjectMRI
dc.subjectregion of interest
dc.subjectdata fusion
dc.subjectclassification
dc.titleAlzheimer's Disease Detection by Utilizing Key Slice Selection in 3D MRI Images
dc.typeConference Object

Files