Alzheimer's Disease Detection by Utilizing Key Slice Selection in 3D MRI Images
| dc.contributor.author | Moradi, Masoud | |
| dc.contributor.author | Demirel, Hasan | |
| dc.contributor.author | Bolourchi, Pouya | |
| dc.date.accessioned | 2026-02-06T18:16:55Z | |
| dc.date.issued | 2018 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description | 20th UKSim-AMSS International Conference on Computer Modelling and Simulation (UKSim) -- MAR 27-29, 2018 -- Emmanuel Coll, Cambridge, ENGLAND | |
| dc.description.abstract | This study proposes a new approach for improving the accuracy of high-dimensional pattern recognition problem of Alzheimer's Disease (AD). The proposed method uses information from three-dimensional Magnetic Resonance Imaging (MRI) brain data with 2D slices in three orthogonal directions. It includes the calculation of Fisher Criterion between the AD and Healthy Control (HC) groups in order to select key-slices in the coronal, sagittal and axial directions. The preprocessing phase involves region detection to segment Region of Interest (ROI) based on Displacement Field (DF) method. Then we utilized energy, contrast and homogeneity metrics along with feature vectors generated by PCA and Probability Distribution Function (PDF) methods in feature extraction phase for each key-slice selected in the earlier phase. Features coming from each key slice are combined through feature fusion for improved accuracy. Experimental results show fusion method that used with brain mask give us the higher or comparable results compared with other feature extraction techniques in the literature. | |
| dc.description.sponsorship | IEEE Comp Soc UK & RI,UK Simulat Soc,European Federat Simulat Soc,European Council Modelling & Simulat,Asia Modelling & Simulat Sec,Kingston Univ,Imperial Coll,Machine Intelligence Res Labs,Norwegian Univ Sci & Technol,Nottingham Trent Univ,Univ Technol Malaysia,Univ Sci Malaysia,Univ Malaysia Sabah,Univ Technol Mara,Univ Malaysia Perlis,Univ Malaysia Pahang,IEEE UK & RI,W Chester Univ Pennsylvania,Univ Tikrit,Univ Zilina,Fort Hays State Univ,Iran Telecom Res Ctr,Univ Teknikal Malaysia Melaka,Cardiff Metropolitan Univ,Hanbat Natl Univ,Tech Univ Appl Sci Wildau,Ken Saro Wiwa Polytechn,Rajasthan Tech Univ,NE Univ | |
| dc.identifier.doi | 10.1109/UKSim.2018.00029 | |
| dc.identifier.endpage | 101 | |
| dc.identifier.isbn | 978-1-5386-5878-9 | |
| dc.identifier.issn | 2381-4772 | |
| dc.identifier.orcid | 0000-0003-3492-0617 | |
| dc.identifier.scopus | 2-s2.0-85061063265 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.startpage | 96 | |
| dc.identifier.uri | https://doi.org/10.1109/UKSim.2018.00029 | |
| dc.identifier.uri | https://hdl.handle.net/11129/8720 | |
| dc.identifier.wos | WOS:000468444200018 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | 2018 Uksim-Amss 20Th International Conference on Computer Modelling and Simulation (Uksim) | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | component | |
| dc.subject | Alzheimer's disease | |
| dc.subject | MRI | |
| dc.subject | region of interest | |
| dc.subject | data fusion | |
| dc.subject | classification | |
| dc.title | Alzheimer's Disease Detection by Utilizing Key Slice Selection in 3D MRI Images | |
| dc.type | Conference Object |










