Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization

dc.contributor.authorAliev, Rafik A.
dc.contributor.authorPedrycz, Witold
dc.contributor.authorGuirimov, Babek G.
dc.contributor.authorAliev, Rashad R.
dc.contributor.authorIlhan, Umit
dc.contributor.authorBabagil, Mustafa
dc.contributor.authorMammadli, Sadik
dc.date.accessioned2026-02-06T18:39:36Z
dc.date.issued2011
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn many real-world problems involving pattern recognition, system identification and modeling, control, decision making, and forecasting of time-series, available data are quite often of uncertain nature. An interesting alternative is to employ type-2 fuzzy sets, which augment fuzzy models with expressive power to develop models, which efficiently capture the factor of uncertainty. The three-dimensional membership functions of type-2 fuzzy sets offer additional degrees of freedom that make it possible to directly and more effectively account for model's uncertainties. Type-2 fuzzy logic systems developed with the aid of evolutionary optimization forms a useful modeling tool subsequently resulting in a collection of efficient If-Then rules. The type-2 fuzzy neural networks take advantage of capabilities of fuzzy clustering by generating type-2 fuzzy rule base, resulting in a small number of rules and then optimizing membership functions of type-2 fuzzy sets present in the antecedent and consequent parts of the rules. The clustering itself is realized with the aid of differential evolution. Several examples, including a benchmark problem of identification of nonlinear system, are considered. The reported comparative analysis of experimental results is used to quantify the performance of the developed networks. (C) 2011 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.ins.2010.12.014
dc.identifier.endpage1608
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.issue9
dc.identifier.orcid0000-0001-5070-1292
dc.identifier.orcid0000-0002-4914-8749
dc.identifier.scopus2-s2.0-79952314626
dc.identifier.scopusqualityQ1
dc.identifier.startpage1591
dc.identifier.urihttps://doi.org/10.1016/j.ins.2010.12.014
dc.identifier.urihttps://hdl.handle.net/11129/12944
dc.identifier.volume181
dc.identifier.wosWOS:000288774700006
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Inc
dc.relation.ispartofInformation Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectType-2 fuzzy neural network
dc.subjectFuzzy clustering
dc.subjectType-2 fuzzy rule base
dc.subjectDifferential evolution optimization
dc.titleType-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization
dc.typeArticle

Files