Discrete wavelet transform recursive inverse algorithm

dc.contributor.authorSalman, Mohammad Shukri
dc.contributor.authorHocanin, Aykut
dc.contributor.authorKukrer, Osman
dc.date.accessioned2026-02-06T17:58:31Z
dc.date.issued2012
dc.departmentDoğu Akdeniz Üniversitesi
dc.description2012 20th Signal Processing and Communications Applications Conference, SIU 2012 --
dc.description.abstractThe recursive inverse (RI) adaptive algorithm, was shown to have comparable performance to that of the well-known recursive-least-squares (RLS) algorithms but with reduced computational complexity. Although the RI algorithm provides significant performance, it suffers from low convergence rate in some situations where a relatively low initial step-size is required. In this paper, we propose a new RI algorithm that applies a discrete wavelet transform (DWT) to the input signal. This transformation reduces the self-correlation of the input signal which, in turn, overcomes the low convergence rate of the RI algorithm when a relatively small initial step-size is used. The performance of the proposed algorithm (DWT-RI) is compared to those of the RI, DWT-RLS and DWT normalized least-mean-square (DWT-NLMS) algorithms in additive white Gaussian noise (AWGN) environment in a noise cancellation setting. The simulations show that the proposed algorithm has a superior convergence rate compared to the other algorithms. © 2012 IEEE.
dc.identifier.doi10.1109/SIU.2012.6204656
dc.identifier.isbn9781467300568
dc.identifier.scopus2-s2.0-84863434589
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204656
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7624
dc.indekslendigikaynakScopus
dc.language.isotr
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectAdditive White Gaussian noise
dc.subjectConvergence rates
dc.subjectInput signal
dc.subjectInverse algorithm
dc.subjectLeast mean squares
dc.subjectNoise cancellation
dc.subjectRecursive least squares
dc.subjectSelf-correlation
dc.subjectStep size
dc.subjectAdaptive algorithms
dc.subjectGaussian noise (electronic)
dc.subjectSignal processing
dc.subjectWhite noise
dc.subjectDiscrete wavelet transforms
dc.titleDiscrete wavelet transform recursive inverse algorithm
dc.title.alternativeAyrik dalgacik dönüşümlü özyi?neli? ters uyarlanir algori?tma
dc.typeConference Object

Files