SOME GENERALIZATIONS OF MULTIPLE LAGUERRE POLYNOMIALS VIA RODRIGUES FORMULA
| dc.contributor.author | Ozarslan, M. Ali | |
| dc.contributor.author | Kaanoglu, Cem | |
| dc.date.accessioned | 2026-02-06T18:19:31Z | |
| dc.date.issued | 2015 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | This paper aims to provide systematic investigation of the family of polynomials generated by the Rodrigues' formulas K-n1,K- n2 ((alpha 1, alpha 2))(x, k, p) = (-1)(n1+n2)e(pxk) [Pi(2)(j=1)x(-alpha j) d(n)j/dx(n)j x(alpha j +nj)]e(-pxk), and M-n1,M- n2 ((alpha 0,p1, .p2)) (x, k) = (-1)(n1+n2)/p(1)(n1)p(2)(n2)x - alpha(0) [Pi(2)(j=1) d(pjxk) d(n)j/dx(n)j e(-pjxk)] x(n1+n2+alpha 0), which include the multiple Laguerre I and the multiple Laguerre II polynomials, respectively. The explicit forms, certain operational formulas involving these polynomials with some applications and linear generating functions for K-n1,K-n2 ((alpha 1, alpha 2))(x, k, p) and M-n1, n2((alpha 0, p1, .p2))(x, k) are obtained. | |
| dc.identifier.endpage | 206 | |
| dc.identifier.issn | 0381-7032 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.startpage | 195 | |
| dc.identifier.uri | https://hdl.handle.net/11129/9146 | |
| dc.identifier.volume | 123 | |
| dc.identifier.wos | WOS:000362309900016 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.language.iso | en | |
| dc.publisher | Charles Babbage Res Ctr | |
| dc.relation.ispartof | Ars Combinatoria | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Rodrigues' formula | |
| dc.subject | Operational formula | |
| dc.subject | Generating function | |
| dc.subject | Multiple Laguerre polynomials | |
| dc.title | SOME GENERALIZATIONS OF MULTIPLE LAGUERRE POLYNOMIALS VIA RODRIGUES FORMULA | |
| dc.type | Article |










