Effective Processor Architecture for Matrix Decomposition

dc.contributor.authorDoukhnitch, Evgueni
dc.contributor.authorSalamah, Muhammed
dc.contributor.authorAndreev, Andrey
dc.date.accessioned2026-02-06T18:35:56Z
dc.date.issued2014
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe singular value decomposition (SVD) and the QR decomposition (QRD) are two prominent matrix decomposition algorithms used in various signal and image processing applications. In this paper, new CORDIC-like algorithms for fast SVD and QRD have been proposed to speed up those processes. The proposed algorithms are based on the Kronecker (tensor) product (KP) of rotation matrices. This product allows implementing multi-angular transformations simultaneously as integrated macro-operation with execution time similar to the CORDIC rotation. The proposed algorithms lead to appreciable improvements in terms of processor area-time.
dc.identifier.doi10.1007/s13369-013-0759-y
dc.identifier.endpage1804
dc.identifier.issn2193-567X
dc.identifier.issn2191-4281
dc.identifier.issue3
dc.identifier.orcid0000-0002-1482-0806
dc.identifier.scopus2-s2.0-84907355608
dc.identifier.scopusqualityQ1
dc.identifier.startpage1797
dc.identifier.urihttps://doi.org/10.1007/s13369-013-0759-y
dc.identifier.urihttps://hdl.handle.net/11129/12145
dc.identifier.volume39
dc.identifier.wosWOS:000331977800026
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.ispartofArabian Journal For Science and Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectVector rotation
dc.subjectSVD
dc.subjectCORDIC
dc.subjectKronecker product
dc.titleEffective Processor Architecture for Matrix Decomposition
dc.typeArticle

Files