3D Facial Expression Recognition with Geometrically Localized Facial Features

dc.contributor.authorSoyel, Hamit
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:17:02Z
dc.date.issued2008
dc.departmentDoğu Akdeniz Üniversitesi
dc.description23rd International Symposium on Computer and Information Sciences -- OCT 27-29, 2008 -- Istanbul, TURKEY
dc.description.abstractThis paper describes a pose invariant three-dimensional (3D) facial expression recognition method using distance vectors retrieved from 3D distributions of facial feature points to classify universal facial expressions. Probabilistic Neural Network architecture is employed as a classifier to recognize the facial expressions from a distance vector obtained from 3D facial feature locations. Facial expressions such as anger, sadness, surprise, joy, disgust, fear and neutral are successfully recognized with an average recognition rate of 87.8%.
dc.identifier.endpage232
dc.identifier.isbn978-1-4244-2880-9
dc.identifier.orcid0000-0002-0305-574X
dc.identifier.scopus2-s2.0-58449092642
dc.identifier.scopusqualityN/A
dc.identifier.startpage229
dc.identifier.urihttps://hdl.handle.net/11129/8752
dc.identifier.wosWOS:000265160400046
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof23Rd International Symposium on Computer and Information Sciences
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subject3D facial expression recognition
dc.subject3D distributions of facial feature points
dc.title3D Facial Expression Recognition with Geometrically Localized Facial Features
dc.typeConference Object

Files