ON A DOUBLE INTEGRAL EQUATION INCLUDING A SET OF TWO VARIABLES POLYNOMIALS SUGGESTED BY LAGUERRE POLYNOMIALS
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Eudoxus Press, Llc
Access Rights
info:eu-repo/semantics/closedAccess
Abstract
In this paper, we introduce general classes of bivariate and Mittag-Leffler functions E-gamma 1,gamma 2((alpha,beta,eta,xi,lambda))(x,y) and Laguerre polynomials L-n,m((alpha,beta,gamma,eta,xi)) (x, y). We investigate double fractional integrals and derivative properties of the above mentioned classes. We further obtain linear generating function for L-n,m((alpha,beta,gamma,eta,xi))(x,y) in terms of E-gamma 1,gamma 2((alpha,beta,eta,xi,lambda))(x,y). Finally, we calculate double Laplace transforms of the above mentioned classes and then we consider a general singular integral equation with L-n,m((alpha,beta,gamma,eta,xi))(x, y) in the kernel and obtain the solution in terms of E-gamma 1,gamma 2((alpha,beta,eta,xi,lambda))(x, y).
Description
Keywords
Double fractional integrals and derivatives, Bivariate Mittag-Leffler function, Bivariate Laguerre polynomials, Double generating functions, Singular double integral equation, Double Laplace integral
Journal or Series
Journal of Computational Analysis and Applications
WoS Q Value
Scopus Q Value
Volume
22
Issue
7










