Using Hybrid Artificial Intelligence Optimization Method to Predict Construction Labour Productivity

dc.contributor.authorEfekan, Efkan
dc.contributor.authorÇelik, Tolga
dc.contributor.authorTokdemir, Onur Behzat
dc.date.accessioned2026-02-06T17:53:49Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Symposium of the International Federation for Structural Concrete, fib Symposium 2023 -- 2023-06-05 through 2023-06-07 -- Istanbul -- 296169
dc.description.abstractPrecise estimation of productivity is crucial for construction managers in making timely decisions. The aim is to propose a novel theoretical approach for predicting and optimizing Construction Labour Productivity (CLP). Numerous factors affecting CLP are the main challenge in modeling labor productivity. Accurate CLP prediction is required for effective decision-making before and during project execution. This article will explain the importance of artificial intelligence-based inference models on construction productivity and why hybrid embedded feature selection models, a new approach to increasing construction productivity, should be used more in integration with AI-based inference models. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.identifier.doi10.1007/978-3-031-32511-3_166
dc.identifier.endpage1630
dc.identifier.isbn9789819620951
dc.identifier.isbn9783031951060
dc.identifier.isbn9783031976964
dc.identifier.isbn9783031976889
dc.identifier.isbn9789819679706
dc.identifier.isbn9789819677986
dc.identifier.isbn9783031951145
dc.identifier.isbn9789819685356
dc.identifier.isbn9789819674879
dc.identifier.isbn9789819688333
dc.identifier.issn2366-2557
dc.identifier.scopus2-s2.0-85164259841
dc.identifier.scopusqualityQ4
dc.identifier.startpage1624
dc.identifier.urihttps://doi.org/10.1007/978-3-031-32511-3_166
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7104
dc.identifier.volume350 LNCE
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofLecture Notes in Civil Engineering
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectArtificial Intelligence
dc.subjectConstruction Productivity
dc.subjectHybrid Embedded Feature Selection
dc.subjectOptimization
dc.titleUsing Hybrid Artificial Intelligence Optimization Method to Predict Construction Labour Productivity
dc.typeConference Object

Files