On the approximation to fractional calculus operators with multivariate Mittag-Leffler function in the kernel

dc.contributor.authorOzarslan, Mehmet Ali
dc.date.accessioned2026-02-06T18:37:19Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractSeveral numerical techniques have been developed to approximate Riemann-Liouville (R- L) and Caputo fractional calculus operators. Recently linear positive operators have been started to use to approximate fractional calculus operators such as R- L, Caputo, Prabhakar and operators containing bivariate Mittag-Leffler functions. In the present paper, we first define and investigate the fractional calculus properties of Caputo derivative operator containing the multivariate Mittag-Leffler function in the kernel. Then we introduce approximating operators by using the modified Kantorovich operators for the approximation to fractional integral and Caputo derivative operators with multivariate Mittag-Leffler function in the kernel. We study the convergence properties of the operators and compute the degree of approximation by means of modulus of continuity and H & ouml;lder continuous functions. The obtained results corresponds to a large family of fractional calculus operators including R- L, Caputo and Prabhakar models.
dc.identifier.doi10.1016/j.cam.2024.116148
dc.identifier.issn0377-0427
dc.identifier.issn1879-1778
dc.identifier.scopus2-s2.0-85200540566
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cam.2024.116148
dc.identifier.urihttps://hdl.handle.net/11129/12416
dc.identifier.volume454
dc.identifier.wosWOS:001293132900001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofJournal of Computational and Applied Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFractional calculus
dc.subjectMultivariate Mittag-Leffler function
dc.subjectBernstein-Kantorovich operators
dc.subjectLaplace transform
dc.subjectModulus of continuity
dc.titleOn the approximation to fractional calculus operators with multivariate Mittag-Leffler function in the kernel
dc.typeArticle

Files