Recognizing biomedical named entities using SVMs: Improving recognition performance with a minimal set of features

dc.contributor.authorDimililer, Nazife
dc.contributor.authorVaroglu, Ekrem
dc.date.accessioned2026-02-06T18:29:01Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Workshop on Knowledge Discvovery in Life Science Literature -- APR09, 2006 -- Singapore, SINGAPORE
dc.description.abstractIn this paper, Support Vector Machines (SVMs) are applied to the identification and automatic annotation of biomedical named entities in the domain of molecular biology, as an extension of the traditional named entity recognition task to special domains. The effect of the use of well-known features such as word formation patterns, lexical, morphological, and surface words on recognition performance is investigated. Experiments have been conducted using the train and test data made public at the Bio-Entity Recognition Task at JNLPBA 2004. An F-score of 69.87% was obtained by using a carefully selected combination of a minimal set of features, which can be easily computed from training data without any use of post-processing or external resources.
dc.description.sponsorshipSPSS Inc,DataMiningGrid Consortium,Univ Minnesota,iXmatch Inc,Childrens Memorial Hosp,NW Univ zu Berlin,Univ Ulster
dc.identifier.endpage67
dc.identifier.isbn3-540-32809-2
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-33745615383
dc.identifier.scopusqualityQ3
dc.identifier.startpage53
dc.identifier.urihttps://hdl.handle.net/11129/11239
dc.identifier.volume3886
dc.identifier.wosWOS:000237198800005
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofKnowledge Discovery in Life Science Literature, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.titleRecognizing biomedical named entities using SVMs: Improving recognition performance with a minimal set of features
dc.typeConference Object

Files