ASYMPTOTIC STABILITY ANALYSIS OF RIEMANN-LIOUVILLE FRACTIONAL STOCHASTIC NEUTRAL DIFFERENTIAL EQUATIONS
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
Abstract
The novelty of our paper is to establish results on asymptotic stability of mild solutions in pth moment to Riemann-Liouville fractional stochastic neutral differential equations (for short Riemann-Liouville FSNDEs) of order alpha is an element of (21, 1) using a Banach's contraction mapping principle. The core point of this paper is to derive the mild solution of FSNDEs involving Riemann-Liouville fractional time-derivative by applying the stochastic version of variation of constants formula. The results are obtained with the help of the theory of fractional differential equations, some properties of Mittag-Leffler functions and asymptotic analysis under the assumption that the corresponding fractional stochastic neutral dynamical system is asymptotically stable.










