Design of a sparse recursive inverse adaptive algorithm for system identification

dc.contributor.authorJahromi, Mohammad N. S.
dc.contributor.authorHocanin, Aykut
dc.contributor.authorKukrer, Osman
dc.contributor.authorSalman, Mohammad Shukri
dc.date.accessioned2026-02-06T18:16:57Z
dc.date.issued2014
dc.departmentDoğu Akdeniz Üniversitesi
dc.description22nd IEEE Signal Processing and Communications Applications Conference (SIU) -- APR 23-25, 2014 -- Karadeniz Teknik Univ, Trabzon, TURKEY
dc.description.abstractBased on the developments in the field of compressive sensing in recent years, several LMS-based algorithms have been developed for sparse system identification. These adaptive algorithms combine a l(1)-norm penalty with the the original cost function of the LMS to create a zero attractor (ZA) and hence utilize the sparsity in the filter taps during the adaptation process. In this paper, we propose a new adaptive algorithm to achieve faster convergence rate and lower mean-square deviation under sparsity assumption of impulse response. The proposed modifications employ the recursive inverse adaptive filtering (RI) scheme and the zero attractor to generate the ZA-RI algorithm. Simulation results demonstrate that the proposed modifications result in significant performance gain in comparison to the conventional LMS-based methods.
dc.description.sponsorshipIEEE,Karadeniz Tech Univ, Dept Comp Engn & Elect & Elect Engn
dc.identifier.endpage1629
dc.identifier.isbn978-1-4799-4874-1
dc.identifier.issn2165-0608
dc.identifier.orcid0000-0002-1769-6652
dc.identifier.orcid0000-0002-3283-4400
dc.identifier.orcid0000-0003-3259-0562
dc.identifier.scopus2-s2.0-84903769637
dc.identifier.scopusqualityN/A
dc.identifier.startpage1627
dc.identifier.urihttps://hdl.handle.net/11129/8741
dc.identifier.wosWOS:000356351400386
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2014 22Nd Signal Processing and Communications Applications Conference (Siu)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectZA-LMS Adaptive Filtering
dc.subjectCompressed Sensing
dc.subjectRecursive Inverse Adaptive Filtering
dc.subjectSystem Identification
dc.titleDesign of a sparse recursive inverse adaptive algorithm for system identification
dc.typeConference Object

Files