On the Klein-Gordon bosonic fields in the Bonnor-Melvin spacetime with a cosmological constant in rainbow gravity: Bonnor-Melvin domain walls

dc.contributor.authorMustafa, Omar
dc.contributor.authorGuvendi, Abdullah
dc.date.accessioned2026-02-06T18:51:23Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe investigate the effect of rainbow gravity on Klein-Gordon (KG) bosons in the background of the magnetized Bonnor-Melvin (BM) spacetime with a cosmological constant. We first show that the very existence of the sinusoidal term sin(2)(root 2 Lambda r), in the BM space-time metric, suggests that sin(2)(root 2 Lambda r) is an element of[0, 1], which consequently restricts the range of the radial coordinate r to r is an element of [0, pi/root 2 Lambda]. Moreover, we show that at r = 0 and r = pi/root 2 Lambda, the magnetized BM-spacetime introduces domain walls (infinitely impenetrable hard walls) within which the KG bosonic fields are allowed to move. Interestingly, the magnetized BM-spacetime introduces not only two domain walls but a series of domain walls. However, we focus on the range r is an element of[0, pi/root 2 Lambda]. A quantum particle remains indefinitely confined within this range and cannot be found elsewhere. Based on these findings, we report the effects of rainbow gravity on KG bosonic fields in BM-spacetime. We use three pairs of rainbow functions: f(chi) = 1/1-(beta) over tilde vertical bar E vertical bar, h(chi) = 1; f(chi) = (1-(beta) over tilde vertical bar E vertical bar)(-1), h(chi) = 1; and f(chi) = 1, h(chi) = root 1-(beta) over tilde vertical bar E vertical bar(upsilon), with upsilon = 1,2. Here, chi = vertical bar E vertical bar/E-p, (beta) over tilde = beta/E-p, and beta is the rainbow parameter. We found that while the pairs (f, h) in the first and third cases fully comply with the theory of rainbow gravity and ensure that E-p is the maximum possible energy for particles and antiparticles, the second pair does not show any response to the effects of rainbow gravity. Moreover, the fascinating properties of this magnetized spacetime background can be useful for modeling magnetic domain walls in condensed matter systems. We show that the corresponding bosonic states can form magnetized, spinning vortices in monolayer materials, and these vortices can be driven by adjusting an out-of-plane aligned magnetic field.
dc.identifier.doi10.1140/epjc/s10052-025-14201-1
dc.identifier.issn1434-6044
dc.identifier.issn1434-6052
dc.identifier.issue5
dc.identifier.orcid0000-0001-6664-3859
dc.identifier.orcid0000-0003-0564-9899
dc.identifier.scopus2-s2.0-105004555077
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1140/epjc/s10052-025-14201-1
dc.identifier.urihttps://hdl.handle.net/11129/15335
dc.identifier.volume85
dc.identifier.wosWOS:001485537800008
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofEuropean Physical Journal C
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectGravitational-Field
dc.subjectSymmetry
dc.subjectStrings
dc.titleOn the Klein-Gordon bosonic fields in the Bonnor-Melvin spacetime with a cosmological constant in rainbow gravity: Bonnor-Melvin domain walls
dc.typeArticle

Files