Optimizing geometrical structure of a residential parabolic solar collector relying on hydrothermal assessment and second law analysis

dc.contributor.authorMalekshah, Emad Hasani
dc.contributor.authorTayebi, Tahar
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorJalili, Bahram
dc.contributor.authorJalili, Payam
dc.contributor.authorAybar, Hikmet S.
dc.date.accessioned2026-02-06T18:37:58Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractResearchers are interested in the optimization of thermal systems due to the rising demand towards renewable and green energy to reduce greenhouse gasses and expenses. To achieve this, the present work aims to conduct the numerical modeling on the residential scale trough solar collector. For this purpose, the lattice Boltzmann method is employed with special treatment for the curved physical boundaries. To enhance the thermal capa-bility of the solar collector, the CuO-water nanofluid is utilized, which its thermal conductivity is estimated using Koo-Kleinstreuer and Li (KKL) model. Furthermore, the Brownian motion effect on the dynamic viscosity is taken into account. In addition, the local and volumetric second law analysis is performed. Besides, the heat line visualization is done to capture the path-line of heat energy within the solar collector. The thermal distribution, flow field, local entropy production (i.e. fluid friction irreversibility and heat transfer irreversibility maps), volumetric entropy generation, Bejan number, and average Nusselt number are the studied items in terms of the governing parameters. The Rayleigh number (103 <= Ra <= 106), CuO nanoparticle concentration (phi = 0, 0.01, 0.02, 0.03, 0.04) and four structural design of the solar collector (Single-pipe, Double-pipe, Triple-pipe, Quadruple-pipe) are assumed as the governing parameters.
dc.identifier.doi10.1016/j.enganabound.2023.09.011
dc.identifier.endpage325
dc.identifier.issn0955-7997
dc.identifier.issn1873-197X
dc.identifier.orcid0000-0002-7379-4185
dc.identifier.orcid0000-0003-4363-8904
dc.identifier.scopus2-s2.0-85171839747
dc.identifier.scopusqualityQ1
dc.identifier.startpage314
dc.identifier.urihttps://doi.org/10.1016/j.enganabound.2023.09.011
dc.identifier.urihttps://hdl.handle.net/11129/12719
dc.identifier.volume157
dc.identifier.wosWOS:001082323000001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Sci Ltd
dc.relation.ispartofEngineering Analysis With Boundary Elements
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectTrough solar collector
dc.subjectHydrothermal analysis
dc.subjectSecond law analysis
dc.subjectLattice Boltzmann method
dc.subjectCuO-water nanofluid
dc.titleOptimizing geometrical structure of a residential parabolic solar collector relying on hydrothermal assessment and second law analysis
dc.typeArticle

Files