Some Results on Backward Stochastic Differential Equations of Fractional Order
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Basel Ag
Access Rights
info:eu-repo/semantics/openAccess
Abstract
In this article, we deal with fractional stochastic differential equations, so-called Caputo type fractional backward stochastic differential equations (Caputo fBSDEs, for short), and study the well-posedness of an adapted solution to Caputo fBSDEs of order alpha is an element of (1/2, 1) whose coefficients satisfy a Lipschitz condition. A novelty of the article is that we introduce a new weighted norm in the square integrable measurable function space that is useful for proving a fundamental lemma and its well-posedness. For this class of systems, we then show the coincidence between the notion of stochastic Volterra integral equation and the mild solution.
Description
Keywords
Fractional backward stochastic differential equations, Backward stochastic nonlinear Volterra integral equation, Well-posedness, Adapted process, Weighted norm
Journal or Series
Qualitative Theory of Dynamical Systems
WoS Q Value
Scopus Q Value
Volume
21
Issue
4










