Effect of the quintessential dark energy on weak deflection angle by Kerr-Newmann Black hole
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
Abstract
In this work, we study the weak gravitational lensing in the background of Kerr-Newman black hole with quintessential dark energy. Initially, we compute the deflection angle of light by charged black hole with quintessential dark energy by utilizing the Gauss-Bonnet theorem. Firstly, we suppose the light rays on the equatorial plane in the axisymmetric spacetime. In doing so, we first find the corresponding optical metrics and then calculate the Gaussian optical curvature to utilize in Gauss-Bonnet theorem. Consequently, we calculate the deflection angle of light for rotating charged black hole with quintessence. Additionally, we also find the deflection angle of light for Kerr-Newman black hole with quintessential dark energy. In order to verify our results, we derive deflection angle by using null geodesic equations which reduces to the deflection angle of Kerr solution with the reduction of specific parameters. Furthermore, we analyze the graphical behavior of deflection angle Theta w.r.t to impact parameter b. Our graphical analysis retrieves various results regarding to the deflection angle by the Kerr-Newman black hole with quintessential dark energy. (C) 2020 Elsevier Inc. All rights reserved.










