Position-dependent mass momentum operator and minimal coupling: point canonical transformation and isospectrality
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
Abstract
The classical and quantum-mechanical correspondence for constant mass settings is used, along with some point canonical transformation, to find the position-dependent mass (PDM) classical and quantum Hamiltonians. The comparison between the resulting quantum PDM-Hamiltonian and the von Roos PDM-Hamiltonian implied that the ordering ambiguity parameters of von Roos are strictly determined. Eliminating, in effect, the ordering ambiguity associated with the von Roos PDM-Hamiltonian. This, consequently, played a vital role in the construction and identification of the PDM-momentum operator. The same recipe is followed to identify the form of the minimal coupling of electromagnetic interactions for the classical and quantum PDM-Hamiltonians. It turned out that whilst the minimal coupling may very well inherit the usual form in classical mechanics (i.e., pj is found eligible and is considered for our Illustrative examples.










