Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators

dc.contributor.authorOzarslan, Mehmet Ali
dc.contributor.authorUstaoglu, Ceren
dc.date.accessioned2026-02-06T18:24:14Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractVery recently, the incomplete Pochhammer ratios were defined in terms of the incomplete beta function By(x,z). With the help of these incomplete Pochhammer ratios, we introduce new incomplete Gauss, confluent hypergeometric, and Appell's functions and investigate several properties of them such as integral representations, derivative formulas, transformation formulas, and recurrence relations. Furthermore, incomplete Riemann-Liouville fractional integral operators are introduced. This definition helps us to obtain linear and bilinear generating relations for the new incomplete Gauss hypergeometric functions.
dc.identifier.doi10.3390/math7050483
dc.identifier.issn2227-7390
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85066846608
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/math7050483
dc.identifier.urihttps://hdl.handle.net/11129/10097
dc.identifier.volume7
dc.identifier.wosWOS:000472664400105
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofMathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectGauss hypergeometric function
dc.subjectconfluent hypergeometric function
dc.subjectAppell's functions
dc.subjectincomplete fractional calculus
dc.subjectRiemann-Liouville fractional integral
dc.subjectgenerating functions
dc.titleSome Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators
dc.typeArticle

Files