The latest vs. averaged recent experience: Which better guides a PSO algorithm?

dc.contributor.authorAcan, Adnan
dc.contributor.authorUnveren, Ahmet
dc.contributor.authorBodur, Mehmet
dc.date.accessioned2026-02-06T18:28:47Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionIEEE Congress on Evolutionary Computation -- JUL 16-21, 2006 -- Vancouver, CANADA
dc.description.abstractA particle swarm optimization strategy based on the use of learned experiences averaged over a number of iterations is presented. The personal and the global best solutions over a number of latest iterations are stored and averages of the stored solutions are used in the velocity computations. Experiments on real-parameter optimization problems published in CEC 2005 test suite demonstrate that the proposed strategy exhibits better performance than conventional PSO for most of the benchmarks, whereas the conventional PSO performed better for only the two non-continuous test cases.
dc.description.sponsorshipIEEE
dc.identifier.doi10.1109/CEC.2006.1688338
dc.identifier.endpage+
dc.identifier.isbn978-0-7803-9487-2
dc.identifier.orcid0000-0001-6645-6797
dc.identifier.scopus2-s2.0-34547369611
dc.identifier.scopusqualityN/A
dc.identifier.startpage414
dc.identifier.urihttps://doi.org/10.1109/CEC.2006.1688338
dc.identifier.urihttps://hdl.handle.net/11129/11117
dc.identifier.wosWOS:000245414200056
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2006 Ieee Congress on Evolutionary Computation, Vols 1-6
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectParticle Swarm
dc.titleThe latest vs. averaged recent experience: Which better guides a PSO algorithm?
dc.typeConference Object

Files