An innovative model for coupled fermion-antifermion pairs

dc.contributor.authorGuvendi, Abdullah
dc.contributor.authorMustafa, Omar
dc.date.accessioned2026-02-06T18:51:22Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractUnderstanding the behavior of fermion-antifermion (ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document}) pairs is crucial in modern physics. These systems, governed by fundamental forces, exhibit complex interactions essential for particle physics, high-energy physics, nuclear physics, and solid-state physics. This study introduces a novel theoretical model using the many-body Dirac equation for ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document} pairs with an effective position-dependent mass (i.e., m -> m+S(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \rightarrow m + \mathcal {S}(r)$$\end{document}) under the influence of an external magnetic field. To validate our model, we show that by modifying the mass with a Coulomb-like potential, m(r)=m-alpha/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(r) = m - \alpha /r$$\end{document}, where -alpha/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha /r$$\end{document} is the Lorentz scalar potential S(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}(r)$$\end{document}, our results match the well-established energy eigenvalues for ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document} pairs interacting through the Coulomb potential, without approximation. By applying adjustments based on the Cornell potential (i.e., S(r)=kr-alpha/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}(r) = kr - \alpha /r$$\end{document}), we derive a closed-form energy expression. We believe this unique model offers significant insights into the dynamics of ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document} pairs under various interaction potentials, with potential applications in particle physics. Additionally, it could be extended to various ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document} systems, such as positronium, relativistic Landau levels for neutral mesons, excitons in monolayer transition metal dichalcogenides, and Weyl pairs in monolayer graphene sheets.
dc.identifier.doi10.1140/epjc/s10052-024-13192-9
dc.identifier.issn1434-6044
dc.identifier.issn1434-6052
dc.identifier.issue8
dc.identifier.orcid0000-0001-6664-3859
dc.identifier.scopus2-s2.0-85202812351
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1140/epjc/s10052-024-13192-9
dc.identifier.urihttps://hdl.handle.net/11129/15323
dc.identifier.volume84
dc.identifier.wosWOS:001303643700004
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofEuropean Physical Journal C
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectEquations
dc.subjectGraphene
dc.titleAn innovative model for coupled fermion-antifermion pairs
dc.typeArticle

Files