Counting of Shortest Paths in a Cubic Grid

dc.contributor.authorDutt, Mousumi
dc.contributor.authorBiswas, Arindam
dc.contributor.authorNagy, Benedek
dc.date.accessioned2026-02-06T18:19:58Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe enumeration of shortest paths in cubic grid is presented herein, which could have importance in image processing and also in the network sciences. The cubic grid considers three neighborhoods - namely, 6-, 18and 26 -neighborhood related to face connectivity, edge connectivity and vertex connectivity, respectively. The formulation for distance metrics is given. L-1, D-18, and L-infinity are the three metrics for 6 -neighborhood, 18neighborhood and 26 -neighborhood. The task is to count the number of minimal paths, based on given neighborhood relations, from any given point to any other, in the three-dimensional cubic grid. Based on the coordinate triplets describing the grid, the formulations for the three neighborhoods are presented in this work. The problem both of theoretical importance and has several practical aspects.
dc.identifier.endpage186
dc.identifier.issn1785-8860
dc.identifier.issue6
dc.identifier.scopus2-s2.0-85196541955
dc.identifier.scopusqualityQ1
dc.identifier.startpage169
dc.identifier.urihttps://hdl.handle.net/11129/9362
dc.identifier.volume21
dc.identifier.wosWOS:001186937600006
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherBudapest Tech
dc.relation.ispartofActa Polytechnica Hungarica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectcubic grid
dc.subjectshortest paths
dc.subjectcombinatorics
dc.subjectpath counting
dc.subjectdigital distances
dc.titleCounting of Shortest Paths in a Cubic Grid
dc.typeArticle

Files