Combination of boosted classifiers using bounded weights

dc.contributor.authorAltinçay, H
dc.contributor.authorTüzel, A
dc.date.accessioned2026-02-06T18:17:16Z
dc.date.issued2005
dc.departmentDoğu Akdeniz Üniversitesi
dc.description3rd International Conference on Advances in Pattern Recognition -- AUG 22-25, 2005 -- Bath, ENGLAND
dc.description.abstractA recently developed neural network model that is based on bounded weights is used for the estimation of an optimal set of weights for ensemble members provided by the. AdaBoost algorithm. Bounded neural network model is firstly modified for this purpose where ensemble members are used to replace the kernel functions. The optimal set of classifier weights are then obtained by the minimization of a least squares error function. The proposed weight estimation approach is compared to the AdaBoost algorithm with original weights. It is observed that better accuracies can be obtained by using a subset of the ensemble members.
dc.identifier.endpage153
dc.identifier.isbn3-540-28757-4
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-27244441682
dc.identifier.scopusqualityQ3
dc.identifier.startpage146
dc.identifier.urihttps://hdl.handle.net/11129/8887
dc.identifier.volume3686
dc.identifier.wosWOS:000232247900016
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofPattern Recognition and Data Mining, Pt 1, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.titleCombination of boosted classifiers using bounded weights
dc.typeConference Object

Files