Smoothing Techniques for Time Series Forecasting

dc.contributor.advisorRashad, Aliyev
dc.contributor.authorHameed, Haifaa Hussein
dc.date.accessioned2016-03-22T19:42:41Z
dc.date.available2016-03-22T19:42:41Z
dc.date.issued2015-07
dc.date.submitted2015
dc.departmentEastern Mediterranean University, Facult of Art and Sciences, Department of Mathematicsen_US
dc.descriptionMaster of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2015. Supervisor: Prof. Dr. Rashad Aliyev.en_US
dc.description.abstractThere are many forecasting techniques available, and selecting the appropriate technique is very important issue to achieve a good forecasting performance. This thesis intends to present the smoothing techniques for time series forecasting. The forecasting process using simple moving average and weighted moving average methods is investigated. The exponential smoothing forecasting method is analyzed. The simple exponential smoothing method is described. Some error measures - Mean Absolute Deviation, Mean Absolute Percentage Error, and Mean Square Error are calculated for above forecasting techniques to define the forecast accuracy of these methods. The double exponential smoothing method is discussed.en_US
dc.description.abstractÖZ: Birçok öngörü teknikleri mevcuttur ve tekniğin uygun seçilmesi iyi bir öngörü performansı elde etmek için çok önemli bir konudur.Bu tez zaman serisi öngörüsü için düzeltme teknikleri sunmayı amaçlıyor. Basit hareketli ortalama ve ağırlıklı hareketli ortalama yöntemleri kullanarak öngörü süreci incelenmiştir. Üstel düzeltme öngörü yöntemi analiz edilir. Basit üstel düzeltme tarif edilir. Yukarıdaki tekniklerde öngörü doğruluğunu tanımlamak için bazı hata önlemleri - Ortalama Mutlak Sapma, Mutlak Yüzde Hata ortalama, ve Ortalama Hata Kare hesaplanır.Çift üstel düzeltme yöntemi tartışılır.en_US
dc.identifier.citationHameed, Haifaa Hussein. (2015).Smoothing Techniques for Time Series Forecasting. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/2326
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMathematicsen_US
dc.subjectApplied Mathematics and Computer Scienceen_US
dc.subjectTime-series analysis - Data processingen_US
dc.subjectForecastingen_US
dc.subjectTime seriesen_US
dc.subjectSimple moving averageen_US
dc.subjectWeighted moving averageen_US
dc.subjectSimple exponential smoothingen_US
dc.subjectDouble exponential smoothingen_US
dc.titleSmoothing Techniques for Time Series Forecastingen_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hameedhaifaa.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: