Predicting Cryptocurrency Price Returns by Using Deep Learning Model of Technical Analysis Indicators

dc.contributor.authorFazlollahi, Negar
dc.contributor.authorEbrahimijam, Saeed
dc.date.accessioned2026-02-06T17:53:49Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description6th International Conference on Banking and Finance Perspectives, ICBFP 2022 -- 2022-05-26 through 2022-05-27 -- Cuenca -- 291359
dc.description.abstractOver the last few years, cryptocurrencies have become a new alternative exchange currency for the global economy. Due to the high volatility in the prices of cryptocurrencies, forecasting the price movements is considered a very complicated challenge in the world of finance. Technical analysis indicators are one of the prediction tools which are widely used by analysts. These indicators, which are explored from the historical prices and volumes, might have useful information on price dynamics in the market. Meanwhile, with the new advances in artificial intelligence techniques, like long short-term memory (LSTM), which is able to keep the track of long-term dependencies; there is the extensive application of deep neural networks for predicting nonstationary and nonlinear time series. This study provides a forecasting method for cryptocurrencies by applying an LSTM multi-input neural network to investigate the prediction power of the lags of technical analysis indicators as the inputs to forecast the price returns of the three cryptocurrencies; Bitcoin(BTC), Ethereum (ETH), and Ripple (XRP) that have the highest market capitalization. The results illustrate that the proposed method helps the investors to make more reliable decisions by significantly improving the prediction accuracy against the random walk over the maximum trading time of BTC, ETH, and XRP datasets. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.identifier.doi10.1007/978-3-031-23416-3_13
dc.identifier.endpage186
dc.identifier.isbn9783031900532
dc.identifier.isbn9783032042170
dc.identifier.isbn9783031945175
dc.identifier.isbn9783032111975
dc.identifier.isbn9783031949005
dc.identifier.isbn9789819665259
dc.identifier.isbn9783319338637
dc.identifier.isbn9783031766572
dc.identifier.isbn9783030552763
dc.identifier.isbn9783030305482
dc.identifier.issn2198-7246
dc.identifier.scopus2-s2.0-85151068747
dc.identifier.scopusqualityQ4
dc.identifier.startpage175
dc.identifier.urihttps://doi.org/10.1007/978-3-031-23416-3_13
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7100
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.ispartofSpringer Proceedings in Business and Economics
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectCryptocurrency
dc.subjectDeep learning model
dc.subjectRandom walk
dc.titlePredicting Cryptocurrency Price Returns by Using Deep Learning Model of Technical Analysis Indicators
dc.typeConference Object

Files