Local Approximation Properties of Modified Baskakov Operators

dc.contributor.authorOzarslan, M. Ali
dc.contributor.authorDuman, Oktay
dc.contributor.authorMahmudov, Nazim I.
dc.date.accessioned2026-02-06T18:34:01Z
dc.date.issued2011
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, we introduce a general modification of the classical Baskakov operators which do not need to preserve the test function x (2). Then, we study an approximation theorem, a Voronovskaya theorem, and various local approximation results for our modified Baskakov operators.
dc.identifier.doi10.1007/s00025-010-0045-1
dc.identifier.endpage11
dc.identifier.issn1422-6383
dc.identifier.issue1-2
dc.identifier.orcid0000-0001-7779-6877
dc.identifier.scopus2-s2.0-79951550643
dc.identifier.scopusqualityQ2
dc.identifier.startpage1
dc.identifier.urihttps://doi.org/10.1007/s00025-010-0045-1
dc.identifier.urihttps://hdl.handle.net/11129/11583
dc.identifier.volume59
dc.identifier.wosWOS:000287359600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherBirkhauser Verlag Ag
dc.relation.ispartofResults in Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectBaskakov operators
dc.subjectthe modulus of continuity
dc.subjectthe second modulus of smoothness
dc.subjectPeetre's K-functional
dc.subjectthe Voronovskaya theorem
dc.titleLocal Approximation Properties of Modified Baskakov Operators
dc.typeArticle

Files