Feature Fusion for Classification Enhancement of Ground Vehicle SAR Images

dc.contributor.authorBolourchi, Pouya
dc.contributor.authorMoradi, Masoud
dc.contributor.authorDemirel, Hasan
dc.contributor.authorUysal, Sener
dc.date.accessioned2026-02-06T18:16:51Z
dc.date.issued2017
dc.departmentDoğu Akdeniz Üniversitesi
dc.description19th IEEE UKSim-AMSS International Conference on Mathematical Modelling and Computer Simulation (UKSim) -- APR 05-07, 2017 -- Emmanuel Coll, Cambridge, ENGLAND
dc.description.abstractIn this paper four feature extraction techniques are utilized to extract features from Synthetic Aperture Radar images namely as Radial Harmonic Fourier Moment, Local Binary Pattern, Haar Wavelet and Radon Transform. Holdout, 2-fold and 10-fold cross validation techniques are used for classification of images by using Support Vector Machine classifier. Haar Wavelet and Radon Transform does not reduce the dimensions of input data, hence Principle Component Analysis is applied to reduce the dimensionality. Fusion is established by concatenation of all the features of Radial Harmonic Fourier Moment, and Local Binary Pattern and selected features of Haar Wavelet Radon Transform. Experimental results verify that fused technique represents an improvement in accuracy.
dc.description.sponsorshipUnited Kingdom Simulat Soc,Asia Modelling & Simulat Soc,IEEE,Nottingham Trent Univ,European Federat Simula Soc,IEEE United Kingdom & RI,European Council Modelling & Simulat,Kingston Univ,Univ Wales Trin Saint David,Vienna Univ Technol,DFT Games Ltd,Univ Tokushima,KFKI AEKI,Hanbat Natl Univ,Univ Technol Malaysia,Ken Saro Wiwa Polytechn,Univ Swansea,Univ Teramo,Rajasthan Tech Univ,Auckland Univ Technol,Univ Teknikal Malaysia,IEEE Comp Soc,Imperial Coll,Machine Intelligence Rese Labs,Norwegian Univ Sci & Technol,Univ Sci Malaysia,Univ Malaysia Sabah,Univ Technol Mara,Univ Malaysia Perlis,Univ Malaysia Pahang,Inst Teknologi Bandung,Kasetsart Univ
dc.identifier.doi10.1109/UKSim.2017.11
dc.identifier.endpage115
dc.identifier.isbn978-1-5386-2735-8
dc.identifier.issn2381-4772
dc.identifier.orcid0000-0003-3492-0617
dc.identifier.orcid0000-0002-5657-0833
dc.identifier.scopus2-s2.0-85046072495
dc.identifier.scopusqualityN/A
dc.identifier.startpage111
dc.identifier.urihttps://doi.org/10.1109/UKSim.2017.11
dc.identifier.urihttps://hdl.handle.net/11129/8676
dc.identifier.wosWOS:000463373000017
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2017 19Th Uksim-Amss International Conference on Mathematical Modelling & Computer Simulation (Uksim)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectcomponent
dc.subjectfeature extraction
dc.subjectfeature fusion
dc.subjectfeature selection
dc.subjectSynthetic Aperture Radar
dc.titleFeature Fusion for Classification Enhancement of Ground Vehicle SAR Images
dc.typeConference Object

Files