Multi-scale features for heartbeat classification using directed acyclic graph CNN

dc.contributor.authorGolrizkhatami, Zahra
dc.contributor.authorTaheri, Shahram
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T18:45:56Z
dc.date.issued2018
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractA new architecture of deep neural networks, directed acyclic graph convolutional neural networks (DAG-CNNs), is used to classify heartbeats from electrocardiogram (ECG) signals into different subject-based classes. DAG-CNNs not only fuse the feature extraction and classification stages of the ECG classification into a single automated learning procedure, but also utilized multi-scale features and perform score-level fusion of multiple classifiers automatically. Therefore, DAG-CNN negates the necessity to extract hand-crafted features. In most of the current approaches, only the high level features which extracted by the last layer of CNN are used. Instead of performing feature level fusion manually and feeding the results into a classifier, the proposed multi-scale system can automatically learn different level of features, combine them and predict the output label. The results over the MIT-BIH arrhythmia benchmarks database demonstrate that the proposed system achieves a superior classification performance compared to most of the state-of-the-art methods.
dc.identifier.doi10.1080/08839514.2018.1501910
dc.identifier.endpage628
dc.identifier.issn0883-9514
dc.identifier.issn1087-6545
dc.identifier.issue7-8
dc.identifier.orcid0000-0002-7279-5565
dc.identifier.orcid0000-0003-2631-4561
dc.identifier.scopus2-s2.0-85052136467
dc.identifier.scopusqualityQ1
dc.identifier.startpage613
dc.identifier.urihttps://doi.org/10.1080/08839514.2018.1501910
dc.identifier.urihttps://hdl.handle.net/11129/14035
dc.identifier.volume32
dc.identifier.wosWOS:000452009500002
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis Inc
dc.relation.ispartofApplied Artificial Intelligence
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectNeural-Networks
dc.subjectEcg Arrhythmia
dc.subjectElectrocardiogram Signals
dc.subjectSegmentation
dc.subjectMorphology
dc.subjectSelection
dc.subjectMixture
dc.titleMulti-scale features for heartbeat classification using directed acyclic graph CNN
dc.typeArticle

Files