Fuzzy time series prediction method based on fuzzy recurrent neural network

dc.contributor.authorAliev, Rafik Aziz
dc.contributor.authorFazlollahi, Bijan
dc.contributor.authorAliyev, Rashad R.
dc.contributor.authorGuirimov, Babek Ghalib
dc.date.accessioned2026-02-06T17:53:46Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.description13th International Conference on Neural Information Processing, ICONIP 2006 --
dc.description.abstractOne of the frequently used forecasting methods is the time series analysis. Time series analysis is based on the idea that past data can be used to predict the future data. Past data may contain imprecise and incomplete information coming from rapidly changing environment. Also the decisions made by the experts are subjective and rest on their individual competence. Therefore, it is more appropriate for the data to be presented by fuzzy numbers instead of crisp numbers. A weakness of traditional crisp time series forecasting methods is that they process only measurement based numerical information and cannot deal with the perception-based historical data represented by fuzzy numbers. Application of a fuzzy time series whose values are linguistic values, can overcome the mentioned weakness of traditional forecasting methods. In this paper we propose a fuzzy recurrent neural network (FRNN) based fuzzy time series forecasting method using genetic algorithm. The effectiveness of the proposed fuzzy time series forecasting method is tested on benchmark examples. © Springer-Verlag Berlin Heidelberg 2006.
dc.description.sponsorshipAsia Pacific Neural Network Assembly
dc.identifier.doi10.1007/11893257_95
dc.identifier.endpage869
dc.identifier.isbn9789819698936
dc.identifier.isbn9789819698042
dc.identifier.isbn9789819698110
dc.identifier.isbn9789819698905
dc.identifier.isbn9783032004949
dc.identifier.isbn9789819512324
dc.identifier.isbn9783032026019
dc.identifier.isbn9783032008909
dc.identifier.isbn9783031915802
dc.identifier.isbn9789819698141
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-33750732937
dc.identifier.scopusqualityQ3
dc.identifier.startpage860
dc.identifier.urihttps://doi.org/10.1007/11893257_95
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7051
dc.identifier.volume4233 LNCS - II
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Verlag
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectBenchmarking
dc.subjectComputational methods
dc.subjectData reduction
dc.subjectFuzzy sets
dc.subjectGenetic algorithms
dc.subjectNeural networks
dc.subjectFuzzy numbers
dc.subjectFuzzy recurrent neural network (FRNN)
dc.subjectFuzzy time series
dc.subjectTime series analysis
dc.titleFuzzy time series prediction method based on fuzzy recurrent neural network
dc.typeConference Object

Files