Korovkin type theorem for the functions defined in the Prism and the corresponding Meyer-Konig and Zeller operators
| dc.contributor.author | Ozarslan, Mehmet Ali | |
| dc.contributor.author | Kara, Mustafa | |
| dc.date.accessioned | 2026-02-06T18:26:59Z | |
| dc.date.issued | 2024 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | In this paper, we consider Meyer-Konig and Zeller (MKZ) operators defined in the prism. We prove a new Korovkin type theorem by using appropriate auxiliary test function and investigate the uniform approximation of these operators. We obtain the order of approximation in terms of the modulus of continuity and modified Lipschitz functions. Finally, we introduce the more general form of the operators and study their approximation properties by obtaining functional partial differential equation which help us to calculate the moments easily. | |
| dc.identifier.doi | 10.2298/FIL2432501O | |
| dc.identifier.endpage | 11516 | |
| dc.identifier.issn | 0354-5180 | |
| dc.identifier.issue | 32 | |
| dc.identifier.scopus | 2-s2.0-85215592823 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 11501 | |
| dc.identifier.uri | https://doi.org/10.2298/FIL2432501O | |
| dc.identifier.uri | https://hdl.handle.net/11129/10739 | |
| dc.identifier.volume | 38 | |
| dc.identifier.wos | WOS:001467756700021 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Univ Nis, Fac Sci Math | |
| dc.relation.ispartof | Filomat | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Meyer-Konig and Zeller operators | |
| dc.subject | Korovkin Type Theorem | |
| dc.subject | positive linear operators | |
| dc.subject | modulus of continuity | |
| dc.subject | generating function | |
| dc.title | Korovkin type theorem for the functions defined in the Prism and the corresponding Meyer-Konig and Zeller operators | |
| dc.type | Article |










