Korovkin type theorem for the functions defined in the Prism and the corresponding Meyer-Konig and Zeller operators

dc.contributor.authorOzarslan, Mehmet Ali
dc.contributor.authorKara, Mustafa
dc.date.accessioned2026-02-06T18:26:59Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, we consider Meyer-Konig and Zeller (MKZ) operators defined in the prism. We prove a new Korovkin type theorem by using appropriate auxiliary test function and investigate the uniform approximation of these operators. We obtain the order of approximation in terms of the modulus of continuity and modified Lipschitz functions. Finally, we introduce the more general form of the operators and study their approximation properties by obtaining functional partial differential equation which help us to calculate the moments easily.
dc.identifier.doi10.2298/FIL2432501O
dc.identifier.endpage11516
dc.identifier.issn0354-5180
dc.identifier.issue32
dc.identifier.scopus2-s2.0-85215592823
dc.identifier.scopusqualityQ2
dc.identifier.startpage11501
dc.identifier.urihttps://doi.org/10.2298/FIL2432501O
dc.identifier.urihttps://hdl.handle.net/11129/10739
dc.identifier.volume38
dc.identifier.wosWOS:001467756700021
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherUniv Nis, Fac Sci Math
dc.relation.ispartofFilomat
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectMeyer-Konig and Zeller operators
dc.subjectKorovkin Type Theorem
dc.subjectpositive linear operators
dc.subjectmodulus of continuity
dc.subjectgenerating function
dc.titleKorovkin type theorem for the functions defined in the Prism and the corresponding Meyer-Konig and Zeller operators
dc.typeArticle

Files