Effect of nonlocal transformations on the linearizability and exact solvability of the nonlinear generalized modified Emden-type equations

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publ Co Pte Ltd

Access Rights

info:eu-repo/semantics/openAccess

Abstract

The nonlinear generalized modified Emden-type equations (GMEE) are known to be linearizable into simple harmonic oscillator (HO) or damped harmonic oscillators (DHO) via some nonlocal transformations. Hereby, we show that the structure of the nonlocal transformation and the linearizability into HO or DHO determines the nature/structure of the dynamical forces involved (hence, determine the structure of the dynamical equation). Yet, a reverse engineering strategy is used so that the exact solutions of the emerging GMEE are nonlocally transformed to find the exact solutions of the HO and DHO dynamical equations. Consequently, whilst the exact solution for the HO remains a textbook one, the exact solution for the DHO (never reported elsewhere, to the best of our knowledge) turns out to be manifestly the most explicit and general solution that offers consistency and comprehensive coverage for the associated under-damping, critical-damping, and over-damping cases (i.e. no complex settings for the coordinates and/or the velocities are eminent/feasible). Moreover, for all emerging dynamical system, we report illustrative figures for each solution as well as the corresponding phase-space trajectories as they evolve in time.

Description

Keywords

Damped harmonic oscillator, generalized modified Emden equations, nonlocal transformation, linearizability and exact solvability, Euler-Lagrange equations invariance

Journal or Series

International Journal of Geometric Methods in Modern Physics

WoS Q Value

Scopus Q Value

Volume

19

Issue

10

Citation

Endorsement

Review

Supplemented By

Referenced By