On Complex Orders in Fractional Calculus: Floors, Ceilings, and Analytic Continuation

dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:16:40Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description12th IFAC Conference on Fractional Differentiation and its Application (ICFDA) -- JUL 09-12, 2024 -- Bordeaux, FRANCE
dc.description.abstractMany sources on fractional calculus include the assumption that all fractional orders are real. However, the usual definitions of Riemann-Liouville fractional integrals and derivatives can be used without modification in the case that the fractional orders are complex, and allowing complex orders creates a more rich structure in which the immense power of analytic continuation can be brought to bear to make many results on fractional derivatives trivially provable from the corresponding (easier) results on fractional integrals. This short paper summarises, for the benefit of the fractional community, the facts of using complex orders of differintegration, including the care that must be taken over defining the fractional derivative formulae precisely, and the usefulness of analytic continuation in this context. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
dc.description.sponsorshipInt Federat Automat Control,Linear Control Systems, TC 2.2,TC 1.1. Modelling, Identification and Signal Processing,TC 2.1. Control Design,TC 2.5. Robust Control,TC 4.2. Mechatronic Systems,IMS laboratory Crone team,Univ Bordeaux/Bordeaux INP/CNRS,ICFDA (Fractional Differentiation & its Applications),SAGIP (National Soc Automatic control, Industrial Engn & Production Engineering),GDR MACS (National Res Group Automatic Control & Production Engineering),Bordeaux INP,EnseirbMatmeca (engn school Bordeaux Inst Tech),IMS res laboratory,ROBSYS (Robustness Autonomous Systems, Res Network Univ Bordeaux),Nouvelle Aquitaine Regional Council
dc.identifier.doi10.1016/j.ifacol.2024.08.180
dc.identifier.endpage148
dc.identifier.issn2405-8963
dc.identifier.issue12
dc.identifier.scopus2-s2.0-85203079109
dc.identifier.scopusqualityQ3
dc.identifier.startpage143
dc.identifier.urihttps://doi.org/10.1016/j.ifacol.2024.08.180
dc.identifier.urihttps://hdl.handle.net/11129/8599
dc.identifier.volume58
dc.identifier.wosWOS:001302134200024
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofIfac Papersonline
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectfractional calculus
dc.subjectcomplex analysis
dc.subjectcomplex fractional orders
dc.subjectdiscontinuities
dc.subjectanalytic continuation
dc.titleOn Complex Orders in Fractional Calculus: Floors, Ceilings, and Analytic Continuation
dc.typeConference Object

Files