Stacked Autoencoders Deep Learning Approach for Left Ventricular Localization in Magnetic Resonance Slices

dc.contributor.authorHelwan, Abdulkader
dc.contributor.authorMa'aitah, Mohammad Khaleel Sallam
dc.contributor.authorÜzelaltınbulat, Selin
dc.contributor.authorSonyel, Bengi
dc.contributor.authorAltobel, Mohamad Ziad
dc.contributor.authorDarwish, Manal
dc.date.accessioned2026-02-06T17:53:47Z
dc.date.issued2022
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Conference on Emerging Technologies and Intelligent Systems, ICETIS 2021 -- 2021-06-25 through 2021-06-26 -- Al Buraimi -- 263669
dc.description.abstractDeep learning (DL) is an effective method for medical object detection. Studies show that deep networks can achieve accuracy in medical segmentation and detection tasks. This is due to the depth and training methods of deep networks which allows them to derive different levels of abstractions of input mages. In this paper, the left ventricle detection task is carried out using a deep network called stacked auto-encoder (SAE). The networks take off this task as a binary classification task wherein left and non-left ventricles cropped images are being recognized by the SAE. Once the network recognizes left and non-left ventricles, the whole task starts by initiating a sliding window that moves through the whole magnetic resonance (MR) slice till a left ventricle is detected. Experimentally, the network showed effective detection performance when target images are noisy as it is seen that it can detect left ventricles in target images with up to 10% of salt and pepper noise. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.identifier.doi10.1007/978-3-030-85990-9_19
dc.identifier.endpage234
dc.identifier.isbn9789819652372
dc.identifier.isbn9783031931055
dc.identifier.isbn9789819662968
dc.identifier.isbn9783031999963
dc.identifier.isbn9783031950162
dc.identifier.isbn9783031947698
dc.identifier.isbn9783032004406
dc.identifier.isbn9783031910074
dc.identifier.isbn9783032083807
dc.identifier.isbn9783032077172
dc.identifier.issn2367-3370
dc.identifier.scopus2-s2.0-85121797456
dc.identifier.scopusqualityQ4
dc.identifier.startpage225
dc.identifier.urihttps://doi.org/10.1007/978-3-030-85990-9_19
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7076
dc.identifier.volume322
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofLecture Notes in Networks and Systems
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectBinary classification
dc.subjectDeep learning
dc.subjectIntelligent system
dc.subjectSliding windows
dc.subjectStacked auto-encoder
dc.titleStacked Autoencoders Deep Learning Approach for Left Ventricular Localization in Magnetic Resonance Slices
dc.typeConference Object

Files