Satellite Image De-Noising With Harris Hawks Meta Heuristic Optimization Algorithm and Improved Adaptive Generalized Gaussian Distribution Threshold Function

dc.contributor.authorGolilarz, Noorbakhsh Amiri
dc.contributor.authorGao, Hui
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:49:38Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractAn image may be influenced by noise during capturing and transmitting process. Removing the possible noise from the image has always been a challenging issue due to this fact that further processing will not be possible unless by diminishing the noise from images. Many researchers attempted to remove the noise to improve the qualitative and also the quantitative results but these methods could not preserve the quality of images after applying de-noising techniques. In this paper, in the first stage, we utilized the most recent nature-inspired meta-heuristic optimization algorithm to get the optimal solutions for the parameters of thresholding function. Using the Harris hawk optimization (HHO) algorithm results in obtaining the optimized thresholded wavelet coefficients before applying the inverse wavelet transform. In the second stage, we proposed the improved adaptive generalized Gaussian distribution (AGGD) threshold, which is a data-driven function with an adaptive threshold value. This function can be fitted to any kind of images without using any shape tuning parameter. It is clear that the calculation of the threshold value does not require any optimization and LMS learning algorithm. The qualitative and quantitative results validate the superiority of the proposed method.
dc.description.sponsorshipNational Natural Science Foundation of China [61673085]
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China under Grant 61673085.
dc.identifier.doi10.1109/ACCESS.2019.2914101
dc.identifier.endpage57468
dc.identifier.issn2169-3536
dc.identifier.orcid0000-0003-2676-989X
dc.identifier.scopus2-s2.0-85065887827
dc.identifier.scopusqualityQ1
dc.identifier.startpage57459
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2019.2914101
dc.identifier.urihttps://hdl.handle.net/11129/14966
dc.identifier.volume7
dc.identifier.wosWOS:000468488700001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Access
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectData driven
dc.subjectde-noising
dc.subjectHarris hawk optimization
dc.subjectimproved AGGD
dc.subjectthresholding function
dc.titleSatellite Image De-Noising With Harris Hawks Meta Heuristic Optimization Algorithm and Improved Adaptive Generalized Gaussian Distribution Threshold Function
dc.typeArticle

Files