Restoration of hyperspectral images using iterative regularization based on higher order singular value decomposition

dc.contributor.authorYeganli, S. Faegheh
dc.contributor.authorDemirel, Hasan
dc.contributor.authorYu, Runyi
dc.contributor.authorMoradi, Masoud
dc.date.accessioned2026-02-06T18:51:09Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractDenoising is an essential task in hyperspectral image preprocessing that can improve the performance of subsequent applications. We propose an iterative hyperspectral images denoising method that results in two algorithms, one global and one nonlocal. Both are based on a higher order singular value decomposition (HOSVD) sparse model and realize a regularization in each iteration. The proposed global algorithm treats the hyperspectral image as a whole entity that is able to jointly consider both spatial and spectral information and then uses an iterative regularization framework to mitigate the noise, while the nonlocal algorithm takes the advantages of a patch-based HOSVD sparse model and is more efficient. The experiments with both synthetic noisy and real hyperspectral images show that the proposed iterative method improves the hyperspectral image quality. The subsequent classification results further validate the effectiveness of the proposed hyperspectral image noise reduction. (C) 2019 SPIE and IS&T
dc.identifier.doi10.1117/1.JEI.28.5.053016
dc.identifier.issn1017-9909
dc.identifier.issn1560-229X
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85073747774
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1117/1.JEI.28.5.053016
dc.identifier.urihttps://hdl.handle.net/11129/15223
dc.identifier.volume28
dc.identifier.wosWOS:000494983500016
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpie-Soc Photo-Optical Instrumentation Engineers
dc.relation.ispartofJournal of Electronic Imaging
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectclassification
dc.subjectdenoising
dc.subjecthigher order singular value decomposition
dc.subjecthyperspectral images
dc.subjectiterative regularization
dc.subjectnon-local
dc.subjectpatch-based
dc.subjectsoft thresholding
dc.subjectsparsity
dc.titleRestoration of hyperspectral images using iterative regularization based on higher order singular value decomposition
dc.typeArticle

Files