Influence of GUP corrected Casimir energy on zero tidal force wormholes in modified teleparallel gravity with matter coupling
| dc.contributor.author | Rizwan, Mohammed Muzakkir | |
| dc.contributor.author | Hassan, Zinnat | |
| dc.contributor.author | Sahoo, P. K. | |
| dc.contributor.author | Ovgun, Ali | |
| dc.date.accessioned | 2026-02-06T18:51:22Z | |
| dc.date.issued | 2024 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | In recent times, the study of the Casimir effect in quantum field theory has garnered increasing attention because of its potential to be an ideal source of exotic matter needed for stabilizing traversable wormholes. It has been confirmed through experimental evidence that this phenomenon involves fluctuations in the vacuum field, leading to a negative energy density. Motivated by the above, we have investigated Casimir wormholes with corrections from the Generalized Uncertainty Principle (GUP) within the framework of matter-coupled teleparallel gravity. Our analysis includes three well-known GUP models: the Kempf, Mangano, and Mann (KMM) model, the Detournay, Gabriel, and Spindel (DGS) model, and a third model called Model II. For a broader analysis, we have considered two well-known model functions for the teleparallel theory: a linear f(T,T)=alpha T+beta T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,\mathcal {T})=\alpha T+\beta \mathcal {T}$$\end{document} and a quadratic model f(T,T)=eta T2+chi T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,\mathcal {T})=\eta T<^>2+\chi \mathcal {T}$$\end{document}. The shape function solutions corresponding to both models are examined in the absence of tidal forces in spacetime. We also demonstrate the crucial role played by the parameters of the f(T,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,\mathcal {T})$$\end{document} models in the violation of the energy conditions. With the increasing interest in detecting gravitational waves from astrophysical objects, we have thoroughly discussed the perturbation of the wormhole solutions in the scalar, electromagnetic, axial gravitational, and Dirac field backgrounds. We employ the 3rd order WKB expansion to find the complex frequencies associated with the quasinormal modes of energy dissipation. Additionally, we also calculate the active mass and total gravitational energy for the wormhole geometry. The amount of exotic matter involved in sustaining these wormholes is also found in this paper. Furthermore, the physical stability of such Casimir wormholes is examined using the Tolman-Oppenheimer-Volkoff equation. | |
| dc.description.sponsorship | Department of Science and Technology (DST), Government of India, New Delhi [DST/INSPIRE Fellowship/2019/IF190911]; National Board for Higher Mathematics (NBHM) under the Department of Atomic Energy (DAE) [02011/3/2022 NBHM(R.P.)/RD II/2152]; COST Action [CA22113, CA21106]; TUBITAK; SCOAP3 | |
| dc.description.sponsorship | ZH acknowledges the Department of Science and Technology (DST), Government of India, New Delhi, for awarding a Senior Research Fellowship (File no. DST/INSPIRE Fellowship/2019/IF190911). PKS acknowledges the National Board for Higher Mathematics (NBHM) under the Department of Atomic Energy (DAE), Govt. of India, for financial support to carry out the Research project no.: 02011/3/2022 NBHM(R.P.)/R&D II/2152 Dt.14.02.2022. A. OE. would like to acknowledge the contribution of the COST Action CA21106-COSMIC WISPers in the Dark Universe: Theory, astrophysics and experiments (CosmicWISPers) and the COST Action CA22113-Fundamental challenges in theoretical physics (THEORY-CHALLENGES). We also thank TUBITAK and SCOAP3 for their support. | |
| dc.identifier.doi | 10.1140/epjc/s10052-024-13497-9 | |
| dc.identifier.issn | 1434-6044 | |
| dc.identifier.issn | 1434-6052 | |
| dc.identifier.issue | 11 | |
| dc.identifier.orcid | 0000-0003-2130-8832 | |
| dc.identifier.orcid | 0000-0002-6608-2075 | |
| dc.identifier.orcid | 0009-0008-6375-9045 | |
| dc.identifier.orcid | 0000-0002-9889-342X | |
| dc.identifier.scopus | 2-s2.0-85208492399 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1140/epjc/s10052-024-13497-9 | |
| dc.identifier.uri | https://hdl.handle.net/11129/15325 | |
| dc.identifier.volume | 84 | |
| dc.identifier.wos | WOS:001345923300003 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Springer | |
| dc.relation.ispartof | European Physical Journal C | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Hole Normal-Modes | |
| dc.subject | Quasi-Normal Modes | |
| dc.subject | Traversable Wormholes | |
| dc.subject | Gravitational Energy | |
| dc.subject | Wkb Approach | |
| dc.subject | Constraints | |
| dc.subject | Spacetime | |
| dc.subject | F(R | |
| dc.title | Influence of GUP corrected Casimir energy on zero tidal force wormholes in modified teleparallel gravity with matter coupling | |
| dc.type | Article |










