Image Super-Resolution via Sparse Representation over Coupled Dictionary Learning Based on Patch Sharpness

dc.contributor.authorYeganli, Faezeh
dc.contributor.authorNazzal, Mahmoud
dc.contributor.authorUnal, Murat
dc.contributor.authorOzkaramanli, Huseyin
dc.date.accessioned2026-02-06T18:28:35Z
dc.date.issued2014
dc.departmentDoğu Akdeniz Üniversitesi
dc.description8th UKSim-AMSS European Modelling Symposium on Computer Modelling and Simulation (EMS) -- OCT 21-23, 2014 -- Pisa, ITALY
dc.description.abstractIn this paper a new algorithm for single-image super-resolution based on sparse representation over a set of coupled low and high resolution dictionary pairs is proposed. The sharpness measure is defined via the magnitude of the gradient operator and is shown to be approximately scale-invariant for low and high resolution patch pairs. It is employed for clustering low and high resolution patches in the training stage and for model selection in the reconstruction stage. A pair of low and high resolution dictionaries is learned for each cluster. The sharpness measure of a low resolution patch is used to select the appropriate cluster dictionary pair for reconstructing the high resolution counterpart. The sparse representation coefficients of low and high resolution patches are assumed to be equal. By multiplying the high resolution dictionary and the sparse coding coefficient of a low resolution patch, the corresponding high resolution patch is reconstructed. Simulation results in terms of PSNR and SSIM and visual comparison, indicate the superior performance of the proposed algorithm compared to the leading super-resolution algorithms in the literature over a set of natural images in sharp edges and corners.
dc.description.sponsorshipUK Simulat Soc,Asia Modelling & Simulat Sect,IEEE UK & RI Sect,IEEE Reg 8,Scuola Super Sant Anna,European Simulat Federat,European Council Modelling & Simulat,Manchester Metropolitan Univ,Univ Politecnica Madrid,Kingston Univ,Liverpool Univ,Univ Technol Malaysia,Univ Malaysia Pahang,Univ Malaysia Sabah,Nottingham Trent Univ,IEEE Comp Soc,IEEE,Inst Teknologi Bandung,IEEE Comp Soc UK & RI Sect,Univ Manchester,Univ Malta,McLeod Inst Simulat Sci,Riga Univ Technol
dc.identifier.doi10.1109/EMS.2014.67
dc.identifier.endpage208
dc.identifier.isbn978-1-4799-7412-2
dc.identifier.orcid0000-0003-3375-0310
dc.identifier.scopus2-s2.0-84988241303
dc.identifier.scopusqualityN/A
dc.identifier.startpage203
dc.identifier.urihttps://doi.org/10.1109/EMS.2014.67
dc.identifier.urihttps://hdl.handle.net/11129/10999
dc.identifier.wosWOS:000411856100033
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofUksim-Amss Eighth European Modelling Symposium on Computer Modelling and Simulation (Ems 2014)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectsingle-image super-resolution
dc.subjectsparse representation
dc.subjectsharpness measure-based clustering
dc.subjectmultiple dictionary pairs
dc.titleImage Super-Resolution via Sparse Representation over Coupled Dictionary Learning Based on Patch Sharpness
dc.typeConference Object

Files