On the fractional calculus of multivariate Mittag-Leffler functions

dc.contributor.authorOzarslan, Mehmet Ali
dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:44:00Z
dc.date.issued2022
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractMultivariate Mittag-Leffler functions are a strong generalisation of the univariate and bivariate Mittag-Leffler functions which are known to be important in fractional calculus. We consider the general functional operator defined by an integral transform with a multivariate Mittag-Leffler function in the kernel. We prove an expression for this operator as an infinite series of Riemann-Liouville integrals, thereby demonstrating that it fits into the established framework of fractional calculus, and we show the power of this series formula by straightforwardly deducing many facts, some new and some already known but now more quickly proved, about the original integral operator. We illustrate our work here by calculating some examples both analytically and numerically, and comparing the results on graphs. We also define fractional derivative operators corresponding to the established integral operator. As an application, we consider some Cauchy-type problems for fractional integro-differential equations involving this operator, where existence and uniqueness of solutions can be proved using fixed point theory. Finally, we generalise the theory by applying the same operators with respect to arbitrary monotonic functions.
dc.identifier.doi10.1080/00207160.2021.1906869
dc.identifier.endpage273
dc.identifier.issn0020-7160
dc.identifier.issn1029-0265
dc.identifier.issue2
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85103642795
dc.identifier.scopusqualityQ1
dc.identifier.startpage247
dc.identifier.urihttps://doi.org/10.1080/00207160.2021.1906869
dc.identifier.urihttps://hdl.handle.net/11129/13873
dc.identifier.volume99
dc.identifier.wosWOS:000635822900001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofInternational Journal of Computer Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectMultivariate Mittag-Leffler function
dc.subjectfractional calculus
dc.subjectintegral transforms
dc.subjectfractional integral equations
dc.subjectexistence-uniqueness results
dc.subjectfractional calculus with respect to functions
dc.titleOn the fractional calculus of multivariate Mittag-Leffler functions
dc.typeArticle

Files