Learning High-Order Semantic Representation for Intent Classification and Slot Filling on Low-Resource Language via Hypergraph

dc.contributor.authorQi, Xianglong
dc.contributor.authorGao, Yang
dc.contributor.authorWang, Ruibin
dc.contributor.authorZhao, Minghua
dc.contributor.authorCui, Shengjia
dc.contributor.authorMortazavi, Mohsen
dc.date.accessioned2026-02-06T17:58:41Z
dc.date.issued2022
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractRepresentation of language is the first and critical task for Natural Language Understanding (NLU) in a dialogue system. Pretraining, embedding model, and fine-tuning for intent classification and slot-filling are popular and well-performing approaches but are time consuming and inefficient for low-resource languages. Concretely, the out-of-vocabulary and transferring to different languages are two tough challenges for multilingual pretrained and cross-lingual transferring models. Furthermore, quality-proved parallel data are necessary for the current frameworks. Stepping over these challenges, different from the existing solutions, we propose a novel approach, the Hypergraph Transfer Encoding Network "HGTransEnNet. The proposed model leverages off-the-shelf high-quality pretrained word embedding models of resource-rich languages to learn the high-order semantic representation of low-resource languages in a transductive clustering manner of hypergraph modeling, which does not need parallel data. The experiments show that the representations learned by "HGTransEnNet"for low-resource language are more effective than the state-of-the-art language models, which are pretrained on a large-scale multilingual or monolingual corpus, in intent classification and slot-filling tasks on Indonesian and English datasets. © 2022 Xianglong Qi et al.
dc.identifier.doi10.1155/2022/8407713
dc.identifier.issn1024-123X
dc.identifier.scopus2-s2.0-85138986513
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1155/2022/8407713
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7694
dc.identifier.volume2022
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherHindawi Limited
dc.relation.ispartofMathematical Problems in Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_Scopus_20260204
dc.subjectClassification (of information)
dc.subjectComputational linguistics
dc.subjectEmbeddings
dc.subjectLarge dataset
dc.subjectModeling languages
dc.subjectSemantics
dc.subjectSpeech processing
dc.subjectCritical tasks
dc.subjectDialogue systems
dc.subjectHigh-order
dc.subjectHigher-order
dc.subjectHyper graph
dc.subjectLow resource languages
dc.subjectNatural language understanding
dc.subjectParallel data
dc.subjectSemantic representation
dc.subjectFilling
dc.titleLearning High-Order Semantic Representation for Intent Classification and Slot Filling on Low-Resource Language via Hypergraph
dc.typeArticle

Files