Kantorovich Variant of the Blending Type Bernstein Operators
| dc.contributor.author | Baytunc, Erdem | |
| dc.contributor.author | Gezer, Halil | |
| dc.contributor.author | Aktuglu, Huseyin | |
| dc.date.accessioned | 2026-02-06T18:36:08Z | |
| dc.date.issued | 2024 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | In this paper, we introduce a novel class of blending-type Bernstein-Kantorovich operators. These operators depend on three parameters: alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. We establish results on the uniform convergence and rate of convergence of these operators in terms of the first and second order modulus of continuity. We also investigate the shape-preserving properties of the operators, such as monotonicity and convexity, for each choice of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. Finally, we provide graphical and numerical results to illustrate the accuracy of the operators and to demonstrate how they approach certain functions. | |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkiye (TUBITAK) | |
| dc.description.sponsorship | Open access funding provided by the Scientific and Technological Research Council of Turkiye (TUBITAK). | |
| dc.identifier.doi | 10.1007/s41980-024-00917-5 | |
| dc.identifier.issn | 1017-060X | |
| dc.identifier.issn | 1735-8515 | |
| dc.identifier.issue | 6 | |
| dc.identifier.scopus | 2-s2.0-85207429347 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1007/s41980-024-00917-5 | |
| dc.identifier.uri | https://hdl.handle.net/11129/12224 | |
| dc.identifier.volume | 50 | |
| dc.identifier.wos | WOS:001339863300001 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Springer Singapore Pte Ltd | |
| dc.relation.ispartof | Bulletin of the Iranian Mathematical Society | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Bernstein operators | |
| dc.subject | Bernstein-Kantorovich operators | |
| dc.subject | Polynomial approximation | |
| dc.subject | Rate of convergence | |
| dc.subject | Modulus of continuity | |
| dc.subject | Shape-preserving properties | |
| dc.subject | Uniform convergence | |
| dc.title | Kantorovich Variant of the Blending Type Bernstein Operators | |
| dc.type | Article |










