Kantorovich Variant of the Blending Type Bernstein Operators

dc.contributor.authorBaytunc, Erdem
dc.contributor.authorGezer, Halil
dc.contributor.authorAktuglu, Huseyin
dc.date.accessioned2026-02-06T18:36:08Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, we introduce a novel class of blending-type Bernstein-Kantorovich operators. These operators depend on three parameters: alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. We establish results on the uniform convergence and rate of convergence of these operators in terms of the first and second order modulus of continuity. We also investigate the shape-preserving properties of the operators, such as monotonicity and convexity, for each choice of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. Finally, we provide graphical and numerical results to illustrate the accuracy of the operators and to demonstrate how they approach certain functions.
dc.description.sponsorshipScientific and Technological Research Council of Turkiye (TUBITAK)
dc.description.sponsorshipOpen access funding provided by the Scientific and Technological Research Council of Turkiye (TUBITAK).
dc.identifier.doi10.1007/s41980-024-00917-5
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.issue6
dc.identifier.scopus2-s2.0-85207429347
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s41980-024-00917-5
dc.identifier.urihttps://hdl.handle.net/11129/12224
dc.identifier.volume50
dc.identifier.wosWOS:001339863300001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Singapore Pte Ltd
dc.relation.ispartofBulletin of the Iranian Mathematical Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectBernstein operators
dc.subjectBernstein-Kantorovich operators
dc.subjectPolynomial approximation
dc.subjectRate of convergence
dc.subjectModulus of continuity
dc.subjectShape-preserving properties
dc.subjectUniform convergence
dc.titleKantorovich Variant of the Blending Type Bernstein Operators
dc.typeArticle

Files