Stability-Improved ADE-FDTD Implementation of Drude Dispersive Models

dc.contributor.authorRamadan, Omar
dc.date.accessioned2026-02-06T18:49:39Z
dc.date.issued2018
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractGraphene, which is considered to be a Drude dispersive model in the 0-10 THz frequency range, has recently received much attention due to its outstanding electrical and optical properties. This increases the interest in the auxiliary differential equation (ADE) implementation of Drude dispersion in the finite-difference time-domain (FDTD) algorithm. In this letter, detailed stability analysis of the ADE-FDTD scheme, which retains the second-order nature of Drude models, is investigated. It is shown that the stability of this scheme is more restrictive than the classical Courant-Friedrichs- Lewy constraint. To overcome this drawback, stability-improved implementation is presented. Numerical examples are included to verify these findings.
dc.identifier.doi10.1109/LAWP.2018.2820638
dc.identifier.endpage880
dc.identifier.issn1536-1225
dc.identifier.issn1548-5757
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85044844891
dc.identifier.scopusqualityQ1
dc.identifier.startpage877
dc.identifier.urihttps://doi.org/10.1109/LAWP.2018.2820638
dc.identifier.urihttps://hdl.handle.net/11129/14989
dc.identifier.volume17
dc.identifier.wosWOS:000431528400038
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Antennas and Wireless Propagation Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectAuxiliary differential equation (ADE)
dc.subjectDrude model
dc.subjectfinite-difference time domain (FDTD)
dc.subjectgraphene
dc.subjectstability analysis
dc.titleStability-Improved ADE-FDTD Implementation of Drude Dispersive Models
dc.typeArticle

Files