On some analytic properties of tempered fractional calculus

dc.contributor.authorFernandez, Arran
dc.contributor.authorUstaoglu, Ceren
dc.date.accessioned2026-02-06T18:37:19Z
dc.date.issued2020
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe consider the integral and derivative operators of tempered fractional calculus, and examine their analytic properties. We discover connections with the classical Riemann-Liouville fractional calculus and demonstrate how the operators may be used to obtain special functions such as hypergeometric and Appell's functions. We also prove an analogue of Taylor's theorem and some integral inequalities to enrich the mathematical theory of tempered fractional calculus. (C) 2019 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.cam.2019.112400
dc.identifier.issn0377-0427
dc.identifier.issn1879-1778
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85070876451
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cam.2019.112400
dc.identifier.urihttps://hdl.handle.net/11129/12411
dc.identifier.volume366
dc.identifier.wosWOS:000491619200003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofJournal of Computational and Applied Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectFractional calculus
dc.subjectTempered fractional calculus
dc.subjectHypergeometric functions
dc.subjectMellin transforms
dc.subjectTaylor's theorem
dc.subjectIntegral inequalities
dc.titleOn some analytic properties of tempered fractional calculus
dc.typeArticle

Files