Computational analysis of light scattering from collagen fiber networks

dc.contributor.authorArifler, Dizem
dc.contributor.authorPavlova, Ina
dc.contributor.authorGillenwater, Ann
dc.contributor.authorRichards-Kortum, Rebecca
dc.date.accessioned2026-02-06T18:28:40Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionConference on Diagnostic Optical Spectroscopy in Biomedicine IV -- JUN 19-21, 2007 -- Munich, GERMANY
dc.description.abstractNeoplastic progression in epithelial tissues is accompanied by structural and morphological changes in the stromal collagen matrix. We used the Finite-Difference Time-Domain (FDTD) method, a popular computational technique for full-vector solution of complex problems in electromagnetics, to establish a relationship between structural properties of collagen fiber networks and light scattering, and to analyze how neoplastic changes alter stromal scattering properties. To create realistic collagen network models, we acquired optical sections from the stroma of fresh normal and neoplastic oral cavity biopsies using fluorescence confocal microscopy. These optical sections were then processed to construct three-dimensional collagen networks of different sizes as FDTD model input. Image analysis revealed that volume fraction of collagen fibers in the stroma decreases with neoplastic progression, and statistical texture features computed suggest that fibers tend to be more disconnected in neoplastic stroma. The FDTD modeling results showed that neoplastic fiber networks have smaller scattering cross-sections compared to normal networks of the same size, whereas high-angle scattering probabilities tend to be higher for neoplastic networks. Characterization of stromal scattering is expected to provide a basis. to better interpret spectroscopic optical signals and to develop more reliable computational models to describe photon propagation in epithelial tissues.
dc.description.sponsorshipNational Cancer Institute [PO1 CA82710, RO1 CA095604]; TRNC Ministry of Education and Culture; Eastern Mediterranean University [MEKB-06-01]
dc.description.sponsorshipThis work was supported by the National Cancer Institute (grants PO1 CA82710 and RO1 CA095604). Computational resources used for FDTD simulations were purchased through funding by the TRNC Ministry of Education and Culture and the Eastern Mediterranean University (grant MEKB-06-01).
dc.description.sponsorshipSPIE,Opt Soc Amer,European Off Aerosp Res & Dev,AF Off Sci Res,USAF Res Lab,European Opt Soc,Wissensch Gesell Lasermed e V,Deutsch Gesell Lasermed e V
dc.identifier.doi10.1117/12.728286
dc.identifier.isbn978-0-8194-6772-0
dc.identifier.issn0277-786X
dc.identifier.issn1996-756X
dc.identifier.orcid0000-0002-3389-2186
dc.identifier.scopus2-s2.0-36248976581
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://doi.org/10.1117/12.728286
dc.identifier.urihttps://hdl.handle.net/11129/11063
dc.identifier.volume6628
dc.identifier.wosWOS:000251475200024
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpie-Int Soc Optical Engineering
dc.relation.ispartofDiagnostic Optical Spectroscopy in Biomedicine Iv
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectfinite-difference time-domain modeling
dc.subjectlight scattering
dc.subjectcollagen matrix
dc.subjectoral neoplasia
dc.subjectfluorescence confocal microscopy
dc.titleComputational analysis of light scattering from collagen fiber networks
dc.typeConference Object

Files